def testConstructNAdamWithLR(self): opt = nadam.Nadam(lr=1.0) self.assertEqual(opt.lr, 1.0) opt_2 = nadam.Nadam(learning_rate=0.1, lr=1.0) self.assertEqual(opt_2.lr, 1.0) opt_3 = nadam.Nadam(learning_rate=0.1) self.assertEqual(opt_3.lr, 0.1)
def testConstructNAdamWithEpsilonValues(self): opt = nadam.Nadam(epsilon=None) config = opt.get_config() self.assertEqual(config["epsilon"], 1e-7) opt = nadam.Nadam(epsilon=1e-8) config = opt.get_config() self.assertEqual(config["epsilon"], 1e-8)
def testBasic(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1, mcache = 0.0, 0.0, 0.0, 0.0, 1.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) opt = nadam.Nadam() update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 3 steps of Nadam for t in range(3): update.run() mcache = update_m_cache(mcache, t) var0_np, m0, v0 = nadam_update_numpy(var0_np, grads0_np, t, m0, v0, mcache) var1_np, m1, v1 = nadam_update_numpy(var1_np, grads1_np, t, m1, v1, mcache) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval())
def testBasicWithLearningRateDecay(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.cached_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = resource_variable_ops.ResourceVariable(var0_np) var1 = resource_variable_ops.ResourceVariable(var1_np) grads0 = constant_op.constant(grads0_np) grads1 = constant_op.constant(grads1_np) learning_rate = 0.001 decay = 0.5 opt = nadam.Nadam(learning_rate=learning_rate, decay=decay) update = opt.apply_gradients( zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) beta1_power, beta2_power = get_beta_accumulators(opt, dtype) # Run 3 steps of Nadam for t in range(3): self.assertAllCloseAccordingToType(0.9**(t + 1), beta1_power.eval()) self.assertAllCloseAccordingToType(0.999**(t + 1), beta2_power.eval()) update.run() lr = learning_rate / (1 + decay * t) var0_np, m0, v0 = nadam_update_numpy(var0_np, grads0_np, t, m0, v0, alpha=lr) var1_np, m1, v1 = nadam_update_numpy(var1_np, grads1_np, t, m1, v1, alpha=lr) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval())