コード例 #1
0
def layer_test(layer_cls,
               kwargs=None,
               input_shape=None,
               input_dtype=None,
               input_data=None,
               expected_output=None,
               expected_output_dtype=None,
               expected_output_shape=None,
               validate_training=True,
               adapt_data=None,
               custom_objects=None,
               test_harness=None,
               supports_masking=None):
  """Test routine for a layer with a single input and single output.

  Args:
    layer_cls: Layer class object.
    kwargs: Optional dictionary of keyword arguments for instantiating the
      layer.
    input_shape: Input shape tuple.
    input_dtype: Data type of the input data.
    input_data: Numpy array of input data.
    expected_output: Numpy array of the expected output.
    expected_output_dtype: Data type expected for the output.
    expected_output_shape: Shape tuple for the expected shape of the output.
    validate_training: Whether to attempt to validate training on this layer.
      This might be set to False for non-differentiable layers that output
      string or integer values.
    adapt_data: Optional data for an 'adapt' call. If None, adapt() will not
      be tested for this layer. This is only relevant for PreprocessingLayers.
    custom_objects: Optional dictionary mapping name strings to custom objects
      in the layer class. This is helpful for testing custom layers.
    test_harness: The Tensorflow test, if any, that this function is being
      called in.
    supports_masking: Optional boolean to check the `supports_masking` property
      of the layer. If None, the check will not be performed.

  Returns:
    The output data (Numpy array) returned by the layer, for additional
    checks to be done by the calling code.

  Raises:
    ValueError: if `input_shape is None`.
  """
  if input_data is None:
    if input_shape is None:
      raise ValueError('input_shape is None')
    if not input_dtype:
      input_dtype = 'float32'
    input_data_shape = list(input_shape)
    for i, e in enumerate(input_data_shape):
      if e is None:
        input_data_shape[i] = np.random.randint(1, 4)
    input_data = 10 * np.random.random(input_data_shape)
    if input_dtype[:5] == 'float':
      input_data -= 0.5
    input_data = input_data.astype(input_dtype)
  elif input_shape is None:
    input_shape = input_data.shape
  if input_dtype is None:
    input_dtype = input_data.dtype
  if expected_output_dtype is None:
    expected_output_dtype = input_dtype

  if dtypes.as_dtype(expected_output_dtype) == dtypes.string:
    if test_harness:
      assert_equal = test_harness.assertAllEqual
    else:
      assert_equal = string_test
  else:
    if test_harness:
      assert_equal = test_harness.assertAllClose
    else:
      assert_equal = numeric_test

  # instantiation
  kwargs = kwargs or {}
  layer = layer_cls(**kwargs)

  if (supports_masking is not None
      and layer.supports_masking != supports_masking):
    raise AssertionError(
        'When testing layer %s, the `supports_masking` property is %r'
        'but expected to be %r.\nFull kwargs: %s' %
        (layer_cls.__name__, layer.supports_masking, supports_masking, kwargs))

  # Test adapt, if data was passed.
  if adapt_data is not None:
    layer.adapt(adapt_data)

  # test get_weights , set_weights at layer level
  weights = layer.get_weights()
  layer.set_weights(weights)

  # test and instantiation from weights
  if 'weights' in tf_inspect.getargspec(layer_cls.__init__):
    kwargs['weights'] = weights
    layer = layer_cls(**kwargs)

  # test in functional API
  x = layers.Input(shape=input_shape[1:], dtype=input_dtype)
  y = layer(x)
  if backend.dtype(y) != expected_output_dtype:
    raise AssertionError('When testing layer %s, for input %s, found output '
                         'dtype=%s but expected to find %s.\nFull kwargs: %s' %
                         (layer_cls.__name__, x, backend.dtype(y),
                          expected_output_dtype, kwargs))

  def assert_shapes_equal(expected, actual):
    """Asserts that the output shape from the layer matches the actual shape."""
    if len(expected) != len(actual):
      raise AssertionError(
          'When testing layer %s, for input %s, found output_shape='
          '%s but expected to find %s.\nFull kwargs: %s' %
          (layer_cls.__name__, x, actual, expected, kwargs))

    for expected_dim, actual_dim in zip(expected, actual):
      if isinstance(expected_dim, tensor_shape.Dimension):
        expected_dim = expected_dim.value
      if isinstance(actual_dim, tensor_shape.Dimension):
        actual_dim = actual_dim.value
      if expected_dim is not None and expected_dim != actual_dim:
        raise AssertionError(
            'When testing layer %s, for input %s, found output_shape='
            '%s but expected to find %s.\nFull kwargs: %s' %
            (layer_cls.__name__, x, actual, expected, kwargs))

  if expected_output_shape is not None:
    assert_shapes_equal(tensor_shape.TensorShape(expected_output_shape),
                        y.shape)

  # check shape inference
  model = models.Model(x, y)
  computed_output_shape = tuple(
      layer.compute_output_shape(
          tensor_shape.TensorShape(input_shape)).as_list())
  computed_output_signature = layer.compute_output_signature(
      tensor_spec.TensorSpec(shape=input_shape, dtype=input_dtype))
  actual_output = model.predict(input_data)
  actual_output_shape = actual_output.shape
  assert_shapes_equal(computed_output_shape, actual_output_shape)
  assert_shapes_equal(computed_output_signature.shape, actual_output_shape)
  if computed_output_signature.dtype != actual_output.dtype:
    raise AssertionError(
        'When testing layer %s, for input %s, found output_dtype='
        '%s but expected to find %s.\nFull kwargs: %s' %
        (layer_cls.__name__, x, actual_output.dtype,
         computed_output_signature.dtype, kwargs))
  if expected_output is not None:
    assert_equal(actual_output, expected_output)

  # test serialization, weight setting at model level
  model_config = model.get_config()
  recovered_model = models.Model.from_config(model_config, custom_objects)
  if model.weights:
    weights = model.get_weights()
    recovered_model.set_weights(weights)
    output = recovered_model.predict(input_data)
    assert_equal(output, actual_output)

  # test training mode (e.g. useful for dropout tests)
  # Rebuild the model to avoid the graph being reused between predict() and
  # See b/120160788 for more details. This should be mitigated after 2.0.
  layer_weights = layer.get_weights()  # Get the layer weights BEFORE training.
  if validate_training:
    model = models.Model(x, layer(x))
    if _thread_local_data.run_eagerly is not None:
      model.compile(
          'rmsprop',
          'mse',
          weighted_metrics=['acc'],
          run_eagerly=should_run_eagerly())
    else:
      model.compile('rmsprop', 'mse', weighted_metrics=['acc'])
    model.train_on_batch(input_data, actual_output)

  # test as first layer in Sequential API
  layer_config = layer.get_config()
  layer_config['batch_input_shape'] = input_shape
  layer = layer.__class__.from_config(layer_config)

  # Test adapt, if data was passed.
  if adapt_data is not None:
    layer.adapt(adapt_data)

  model = models.Sequential()
  model.add(layers.Input(shape=input_shape[1:], dtype=input_dtype))
  model.add(layer)

  layer.set_weights(layer_weights)
  actual_output = model.predict(input_data)
  actual_output_shape = actual_output.shape
  for expected_dim, actual_dim in zip(computed_output_shape,
                                      actual_output_shape):
    if expected_dim is not None:
      if expected_dim != actual_dim:
        raise AssertionError(
            'When testing layer %s **after deserialization**, '
            'for input %s, found output_shape='
            '%s but expected to find inferred shape %s.\nFull kwargs: %s' %
            (layer_cls.__name__,
             x,
             actual_output_shape,
             computed_output_shape,
             kwargs))
  if expected_output is not None:
    assert_equal(actual_output, expected_output)

  # test serialization, weight setting at model level
  model_config = model.get_config()
  recovered_model = models.Sequential.from_config(model_config, custom_objects)
  if model.weights:
    weights = model.get_weights()
    recovered_model.set_weights(weights)
    output = recovered_model.predict(input_data)
    assert_equal(output, actual_output)

  # for further checks in the caller function
  return actual_output
コード例 #2
0
    def _get_single_variable(self,
                             name,
                             shape=None,
                             dtype=dtypes.float32,
                             initializer=None,
                             regularizer=None,
                             partition_info=None,
                             reuse=None,
                             trainable=None,
                             caching_device=None,
                             validate_shape=True,
                             constraint=None,
                             synchronization=vs.VariableSynchronization.AUTO,
                             aggregation=vs.VariableAggregation.NONE):
        """Get or create a single Variable (e.g.

    a shard or entire variable).

    See the documentation of get_variable above (ignore partitioning components)
    for details.

    Args:
      name: see get_variable.
      shape: see get_variable.
      dtype: see get_variable.
      initializer: see get_variable.
      regularizer: see get_variable.
      partition_info: _PartitionInfo object.
      reuse: see get_variable.
      trainable: see get_variable.
      caching_device: see get_variable.
      validate_shape: see get_variable.
      constraint: see get_variable.
      synchronization: see get_variable.
      aggregation: see get_variable.

    Returns:
      A Variable.  See documentation of get_variable above.

    Raises:
      ValueError: See documentation of get_variable above.
    """
        # Set to true if initializer is a constant.
        initializing_from_value = False
        if initializer is not None and not callable(initializer):
            initializing_from_value = True
        if shape is not None and initializing_from_value:
            raise ValueError(
                "If initializer is a constant, do not specify shape.")

        dtype = dtypes.as_dtype(dtype)
        shape = as_shape(shape)

        if name in self._vars:
            # Here we handle the case when returning an existing variable.
            if reuse is False:  # pylint: disable=g-bool-id-comparison
                err_msg = ("Variable %s already exists, disallowed."
                           " Did you mean to set reuse=True or "
                           "reuse=tf.AUTO_REUSE in VarScope?" % name)
                # ResourceVariables don't have an op associated with so no traceback
                raise ValueError(err_msg)
            found_var = self._vars[name]
            if not shape.is_compatible_with(found_var.get_shape()):
                raise ValueError(
                    "Trying to share variable %s, but specified shape %s"
                    " and found shape %s." %
                    (name, shape, found_var.get_shape()))
            if not dtype.is_compatible_with(found_var.dtype):
                dtype_str = dtype.name
                found_type_str = found_var.dtype.name
                raise ValueError(
                    "Trying to share variable %s, but specified dtype %s"
                    " and found dtype %s." % (name, dtype_str, found_type_str))
            return found_var

        # The code below handles only the case of creating a new variable.
        if reuse is True:  # pylint: disable=g-bool-id-comparison
            raise ValueError(
                "Variable %s does not exist, or was not created with "
                "tf.get_variable(). Did you mean to set "
                "reuse=tf.AUTO_REUSE in VarScope?" % name)

        # Create the tensor to initialize the variable with default value.
        if initializer is None:
            initializer, initializing_from_value = self._get_default_initializer(
                name=name, shape=shape, dtype=dtype)
        # Enter an init scope when creating the initializer.
        with ops.init_scope():
            if initializing_from_value:
                init_val = initializer
                variable_dtype = None
            else:
                # Instantiate initializer if provided initializer is a type object.
                if tf_inspect.isclass(initializer):
                    initializer = initializer()
                if shape.is_fully_defined():
                    if "partition_info" in tf_inspect.getargspec(
                            initializer).args:
                        init_val = functools.partial(
                            initializer,
                            shape.as_list(),
                            dtype=dtype,
                            partition_info=partition_info)
                    else:
                        init_val = functools.partial(initializer,
                                                     shape.as_list(),
                                                     dtype=dtype)
                    variable_dtype = dtype.base_dtype
                else:
                    init_val = initializer
                    variable_dtype = None

        # Create the variable (Always eagerly as a workaround for a strange
        # tpu / funcgraph / keras functional model interaction )
        with ops.init_scope():
            v = variables.Variable(initial_value=init_val,
                                   name=name,
                                   trainable=trainable,
                                   caching_device=caching_device,
                                   dtype=variable_dtype,
                                   validate_shape=validate_shape,
                                   constraint=constraint,
                                   synchronization=synchronization,
                                   aggregation=aggregation)

        self._vars[name] = v
        logging.vlog(1, "Created variable %s with shape %s and init %s",
                     v.name, format(shape), initializer)

        # Run the regularizer if requested and save the resulting loss.
        if regularizer:
            self.add_regularizer(v, regularizer)

        return v