コード例 #1
0
def _StridedSliceGrad(op, grad):
    """Gradient for StridedSlice op."""
    begin = op.inputs[1]
    end = op.inputs[2]
    strides = op.inputs[3]
    # StridedSliceGrad requires `x`, `begin`, `end` and `strides` to be of the
    # same dtype so we build a shape of the same type as other args.
    # Note that the choice of `begin` for specifying `out_type` is arbitrary.
    # We could choose any of {begin|end|strides}.dtype since they are required to
    # be the same.
    x = array_ops.shape(op.inputs[0], out_type=begin.dtype)

    x_static = tensor_util.constant_value(x)
    x = x_static if x_static is not None else x
    begin_static = tensor_util.constant_value(begin)
    begin = begin_static if begin_static is not None else begin
    end_static = tensor_util.constant_value(end)
    end = end_static if end_static is not None else end
    strides_static = tensor_util.constant_value(strides)
    strides = strides_static if strides_static is not None else strides

    return array_ops.strided_slice_grad(
        x,
        begin,
        end,
        strides,
        grad,
        begin_mask=op.get_attr("begin_mask"),
        end_mask=op.get_attr("end_mask"),
        ellipsis_mask=op.get_attr("ellipsis_mask"),
        new_axis_mask=op.get_attr("new_axis_mask"),
        shrink_axis_mask=op.get_attr("shrink_axis_mask")), None, None, None
コード例 #2
0
ファイル: array_ops_test.py プロジェクト: ppwwyyxx/tensorflow
 def testInt64Shape(self):
     with self.test_session(use_gpu=True) as sess:
         original_dy = tf.reshape(tf.cast(tf.range(1, 5, 1), tf.float32), shape=(4, 1, 1))
         original_shape = tf.constant([6, 4, 4], dtype=tf.int64)
         sess.run(tf.global_variables_initializer())
         begin = tf.constant([0, 0, 0], dtype=tf.int64)
         end = tf.constant([4, 1, 1], dtype=tf.int64)
         strides = tf.constant([1, 1, 1], dtype=tf.int64)
         dx = array_ops.strided_slice_grad(original_shape, begin, end, strides, original_dy)
         sess.run(dx)
コード例 #3
0
ファイル: array_ops_test.py プロジェクト: ppwwyyxx/tensorflow
 def testHostVsDevice(self):
     with self.test_session(use_gpu=True) as sess:
         var2 = tf.Variable(tf.reshape(tf.cast(tf.range(1, 5, 1), tf.float32), shape=(4, 1, 1)))
         varshape = tf.Variable([6, 4, 4], dtype=tf.int32)
         sess.run(tf.global_variables_initializer())
         begin = tf.constant([0, 0, 0])
         end = tf.constant([4, 1, 1])
         strides = tf.constant([1, 1, 1])
         foo = array_ops.strided_slice_grad(varshape, begin, end, strides, var2)
         sess.run(foo)
コード例 #4
0
 def testInt64Shape(self):
     with self.test_session(use_gpu=True) as sess:
         original_dy = tf.reshape(tf.cast(tf.range(1, 5, 1), tf.float32),
                                  shape=(4, 1, 1))
         original_shape = tf.constant([6, 4, 4], dtype=tf.int64)
         sess.run(tf.initialize_all_variables())
         begin = tf.constant([0, 0, 0], dtype=tf.int64)
         end = tf.constant([4, 1, 1], dtype=tf.int64)
         strides = tf.constant([1, 1, 1], dtype=tf.int64)
         dx = array_ops.strided_slice_grad(original_shape, begin, end,
                                           strides, original_dy)
         sess.run(dx)
コード例 #5
0
ファイル: array_ops_test.py プロジェクト: PaullMP/TensorFlowT
 def testHostVsDevice(self):
   with self.test_session(use_gpu=True) as sess:
     var2 = tf.Variable(
         tf.reshape(
             tf.cast(tf.range(1, 5, 1), tf.float32), shape=(4, 1, 1)))
     varshape = tf.Variable([6, 4, 4], dtype=tf.int32)
     sess.run(tf.initialize_all_variables())
     begin = tf.constant([0, 0, 0])
     end = tf.constant([4, 1, 1])
     strides = tf.constant([1, 1, 1])
     foo = array_ops.strided_slice_grad(varshape, begin, end, strides, var2)
     sess.run(foo)
コード例 #6
0
 def testInt64Shape(self):
   with self.test_session(use_gpu=True) as sess:
     original_dy = array_ops.reshape(
         math_ops.cast(math_ops.range(1, 5, 1), dtypes.float32),
         shape=(4, 1, 1))
     original_shape = constant_op.constant([6, 4, 4], dtype=dtypes.int64)
     sess.run(variables.global_variables_initializer())
     begin = constant_op.constant([0, 0, 0], dtype=dtypes.int64)
     end = constant_op.constant([4, 1, 1], dtype=dtypes.int64)
     strides = constant_op.constant([1, 1, 1], dtype=dtypes.int64)
     dx = array_ops.strided_slice_grad(original_shape, begin, end, strides,
                                       original_dy)
     sess.run(dx)
コード例 #7
0
 def testHostVsDevice(self):
   with self.test_session(use_gpu=True) as sess:
     var2 = variables.Variable(
         array_ops.reshape(
             math_ops.cast(math_ops.range(1, 5, 1), dtypes.float32),
             shape=(4, 1, 1)))
     varshape = variables.Variable([6, 4, 4], dtype=dtypes.int32)
     sess.run(variables.global_variables_initializer())
     begin = constant_op.constant([0, 0, 0])
     end = constant_op.constant([4, 1, 1])
     strides = constant_op.constant([1, 1, 1])
     foo = array_ops.strided_slice_grad(varshape, begin, end, strides, var2)
     sess.run(foo)
コード例 #8
0
ファイル: array_ops_test.py プロジェクト: PaullMP/TensorFlowT
 def testMixedIndexTypes(self):
   with self.test_session(use_gpu=True) as sess:
     original_dy = tf.reshape(
         tf.cast(tf.range(1, 5, 1), tf.float32), shape=(4, 1, 1))
     original_shape = tf.constant([6, 4, 4], dtype=tf.int64)
     sess.run(tf.initialize_all_variables())
     begin = tf.constant([0, 0, 0], dtype=tf.int32)
     end = tf.constant([4, 1, 1], dtype=tf.int64)
     strides = tf.constant([1, 1, 1], dtype=tf.int64)
     with self.assertRaisesRegexp(
         TypeError, "Input 'begin' of 'StridedSliceGrad' Op has type int32"
         " that does not match type int64 of argument 'shape'"):
       dx = array_ops.strided_slice_grad(original_shape, begin, end, strides,
                                         original_dy)
       sess.run(dx)
コード例 #9
0
  def testStridedSliceGradWithNonConstAxis(self):
    if test.is_gpu_available(cuda_only=True):
      random_seed.set_random_seed(0)
      x = random_ops.truncated_normal([1, 784], seed=0)
      conv = _two_layer_model(x)
      end = array_ops.placeholder(dtype='int32')
      shape = array_ops.shape(conv)
      end_val = [1, 2, 3, 4]
      s = array_ops.strided_slice(
          conv, [0, 0, 0, 0], end_val, strides=[1, 2, 3, 1])
      s_grad = array_ops.strided_slice_grad(shape, [0, 0, 0, 0], end,
                                            [1, 2, 3, 1], s)
      output = array_ops.identity(s_grad)

      with session.Session() as sess:
        output_val_ref = sess.run(output, feed_dict={end: end_val})

      with session.Session(config=_get_config()) as sess:
        metadata = config_pb2.RunMetadata()
        output_val = sess.run(
            output, run_metadata=metadata, feed_dict={
                end: end_val
            })

      nodes = []
      num_transposes = 0
      for node in metadata.cost_graph.node:
        if node.name.startswith('LayoutOptimizerTranspose'):
          num_transposes += 1
        nodes.append(node.name)

      # Four transposes were initially added in the Expand phase of
      # LayoutOptimizer; two of them are cancelled out in the Collapse phase.
      expected_num_transposes = 2
      self.assertEqual(expected_num_transposes, num_transposes)
      self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes)
      self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-StridedSliceGrad-0-0',
                    nodes)
      self.assertIn('LayoutOptimizerVecPermuteNHWCToNCHW_StridedSliceGrad_2',
                    nodes)
      self.assertIn('LayoutOptimizer-StridedSlice-StridedSliceGrad/begin',
                    nodes)
      self.assertIn('LayoutOptimizer-StridedSlice-StridedSliceGrad/strides',
                    nodes)
      self.assertAllClose(output_val_ref, output_val, atol=1e-3)
コード例 #10
0
ファイル: array_grad.py プロジェクト: Jackhuang945/tensorflow
def _StridedSliceGrad(op, grad):
  """Gradient for StridedSlice op."""
  x = array_ops.shape(op.inputs[0])
  begin = op.inputs[1]
  end = op.inputs[2]
  strides = op.inputs[3]

  return array_ops.strided_slice_grad(
      x,
      begin,
      end,
      strides,
      grad,
      begin_mask=op.get_attr("begin_mask"),
      end_mask=op.get_attr("end_mask"),
      ellipsis_mask=op.get_attr("ellipsis_mask"),
      new_axis_mask=op.get_attr("new_axis_mask"),
      shrink_axis_mask=op.get_attr("shrink_axis_mask")), None, None, None
コード例 #11
0
def _StridedSliceGrad(op, grad):
    """Gradient for StridedSlice op."""
    x = array_ops.shape(op.inputs[0])
    begin = op.inputs[1]
    end = op.inputs[2]
    strides = op.inputs[3]

    return array_ops.strided_slice_grad(
        x,
        begin,
        end,
        strides,
        grad,
        begin_mask=op.get_attr("begin_mask"),
        end_mask=op.get_attr("end_mask"),
        ellipsis_mask=op.get_attr("ellipsis_mask"),
        new_axis_mask=op.get_attr("new_axis_mask"),
        shrink_axis_mask=op.get_attr("shrink_axis_mask")), None, None, None
コード例 #12
0
def _StridedSliceGrad(op, grad):
    """Gradient for StridedSlice op."""
    begin = op.inputs[1]
    end = op.inputs[2]
    strides = op.inputs[3]
    # StridedSliceGrad requires `x`, `begin`, `end` and `strides` to be of the
    # same dtype so we build a shape of the same type as other args.
    # Note that the choice of `begin` for specifying `out_type` is arbitrary.
    # We could choose any of {begin|end|strides}.dtype since they are required to
    # be the same.
    x = array_ops.shape(op.inputs[0], out_type=begin.dtype)

    return array_ops.strided_slice_grad(
        x,
        begin,
        end,
        strides,
        grad,
        begin_mask=op.get_attr("begin_mask"),
        end_mask=op.get_attr("end_mask"),
        ellipsis_mask=op.get_attr("ellipsis_mask"),
        new_axis_mask=op.get_attr("new_axis_mask"),
        shrink_axis_mask=op.get_attr("shrink_axis_mask")), None, None, None
コード例 #13
0
ファイル: array_grad.py プロジェクト: Wajih-O/tensorflow
def _StridedSliceGrad(op, grad):
  """Gradient for StridedSlice op."""
  begin = op.inputs[1]
  end = op.inputs[2]
  strides = op.inputs[3]
  # StridedSliceGrad requires `x`, `begin`, `end` and `strides` to be of the
  # same dtype so we build a shape of the same type as other args.
  # Note that the choice of `begin` for specifying `out_type` is arbitrary.
  # We could choose any of {begin|end|strides}.dtype since they are required to
  # be the same.
  x = array_ops.shape(op.inputs[0], out_type=begin.dtype)

  return array_ops.strided_slice_grad(
      x,
      begin,
      end,
      strides,
      grad,
      begin_mask=op.get_attr("begin_mask"),
      end_mask=op.get_attr("end_mask"),
      ellipsis_mask=op.get_attr("ellipsis_mask"),
      new_axis_mask=op.get_attr("new_axis_mask"),
      shrink_axis_mask=op.get_attr("shrink_axis_mask")), None, None, None
コード例 #14
0
    def testStridedSliceGrad(self):
        # Tests cases where input shape is empty.
        self._testNAry(lambda x: array_ops.strided_slice_grad(*x), [
            np.array([], dtype=np.int32),
            np.array([], dtype=np.int32),
            np.array([], dtype=np.int32),
            np.array([], dtype=np.int32),
            np.float32(0.5)
        ],
                       expected=np.array(np.float32(0.5), dtype=np.float32))

        # Tests case where input shape is non-empty, but gradients are empty.
        self._testNAry(lambda x: array_ops.strided_slice_grad(*x), [
            np.array([3], dtype=np.int32),
            np.array([0], dtype=np.int32),
            np.array([0], dtype=np.int32),
            np.array([1], dtype=np.int32),
            np.array([], dtype=np.float32)
        ],
                       expected=np.array([0, 0, 0], dtype=np.float32))

        self._testNAry(lambda x: array_ops.strided_slice_grad(*x), [
            np.array([3, 0], dtype=np.int32),
            np.array([1, 0], dtype=np.int32),
            np.array([3, 0], dtype=np.int32),
            np.array([1, 1], dtype=np.int32),
            np.array([[], []], dtype=np.float32)
        ],
                       expected=np.array([[], [], []], dtype=np.float32))

        self._testNAry(lambda x: array_ops.strided_slice_grad(*x), [
            np.array([3, 3], dtype=np.int32),
            np.array([1, 1], dtype=np.int32),
            np.array([3, 3], dtype=np.int32),
            np.array([1, 1], dtype=np.int32),
            np.array([[5, 6], [8, 9]], dtype=np.float32)
        ],
                       expected=np.array([[0, 0, 0], [0, 5, 6], [0, 8, 9]],
                                         dtype=np.float32))

        def ssg_test(x):
            return array_ops.strided_slice_grad(*x,
                                                shrink_axis_mask=0x4,
                                                new_axis_mask=0x1)

        self._testNAry(ssg_test, [
            np.array([3, 1, 3], dtype=np.int32),
            np.array([0, 0, 0, 2], dtype=np.int32),
            np.array([0, 3, 1, -4], dtype=np.int32),
            np.array([1, 2, 1, -3], dtype=np.int32),
            np.array([[[1], [2]]], dtype=np.float32)
        ],
                       expected=np.array(
                           [[[0, 0, 1]], [[0, 0, 0]], [[0, 0, 2]]],
                           dtype=np.float32))

        ssg_test2 = lambda x: array_ops.strided_slice_grad(*x,
                                                           new_axis_mask=0x15)
        self._testNAry(ssg_test2, [
            np.array([4, 4], dtype=np.int32),
            np.array([0, 0, 0, 1, 0], dtype=np.int32),
            np.array([0, 3, 0, 4, 0], dtype=np.int32),
            np.array([1, 2, 1, 2, 1], dtype=np.int32),
            np.array([[[[[1], [2]]], [[[3], [4]]]]], dtype=np.float32)
        ],
                       expected=np.array([[0, 1, 0, 2], [0, 0, 0, 0],
                                          [0, 3, 0, 4], [0, 0, 0, 0]],
                                         dtype=np.float32))

        self._testNAry(lambda x: array_ops.strided_slice_grad(*x), [
            np.array([3, 3], dtype=np.int32),
            np.array([0, 2], dtype=np.int32),
            np.array([2, 0], dtype=np.int32),
            np.array([1, -1], dtype=np.int32),
            np.array([[1, 2], [3, 4]], dtype=np.float32)
        ],
                       expected=np.array([[0, 2, 1], [0, 4, 3], [0, 0, 0]],
                                         dtype=np.float32))

        self._testNAry(lambda x: array_ops.strided_slice_grad(*x), [
            np.array([3, 3], dtype=np.int32),
            np.array([2, 2], dtype=np.int32),
            np.array([0, 1], dtype=np.int32),
            np.array([-1, -2], dtype=np.int32),
            np.array([[1], [2]], dtype=np.float32)
        ],
                       expected=np.array([[0, 0, 0], [0, 0, 2], [0, 0, 1]],
                                         dtype=np.float32))
コード例 #15
0
 def ssg_test(x):
   return array_ops.strided_slice_grad(*x, shrink_axis_mask=0x4,
                                       new_axis_mask=0x1)
コード例 #16
0
  def testStridedSliceGrad(self):
    # Tests cases where input shape is empty.
    self._testNAry(lambda x: array_ops.strided_slice_grad(*x),
                   [np.array([], dtype=np.int32),
                    np.array([], dtype=np.int32),
                    np.array([], dtype=np.int32),
                    np.array([], dtype=np.int32),
                    np.float32(0.5)],
                   expected=np.array(np.float32(0.5), dtype=np.float32))

    # Tests case where input shape is non-empty, but gradients are empty.
    self._testNAry(lambda x: array_ops.strided_slice_grad(*x),
                   [np.array([3], dtype=np.int32),
                    np.array([0], dtype=np.int32),
                    np.array([0], dtype=np.int32),
                    np.array([1], dtype=np.int32),
                    np.array([], dtype=np.float32)],
                   expected=np.array([0, 0, 0], dtype=np.float32))

    self._testNAry(lambda x: array_ops.strided_slice_grad(*x),
                   [np.array([3, 0], dtype=np.int32),
                    np.array([1, 0], dtype=np.int32),
                    np.array([3, 0], dtype=np.int32),
                    np.array([1, 1], dtype=np.int32),
                    np.array([[], []], dtype=np.float32)],
                   expected=np.array([[], [], []], dtype=np.float32))

    self._testNAry(lambda x: array_ops.strided_slice_grad(*x),
                   [np.array([3, 3], dtype=np.int32),
                    np.array([1, 1], dtype=np.int32),
                    np.array([3, 3], dtype=np.int32),
                    np.array([1, 1], dtype=np.int32),
                    np.array([[5, 6], [8, 9]], dtype=np.float32)],
                   expected=np.array([[0, 0, 0], [0, 5, 6], [0, 8, 9]],
                                     dtype=np.float32))

    def ssg_test(x):
      return array_ops.strided_slice_grad(*x, shrink_axis_mask=0x4,
                                          new_axis_mask=0x1)

    self._testNAry(ssg_test,
                   [np.array([3, 1, 3], dtype=np.int32),
                    np.array([0, 0, 0, 2], dtype=np.int32),
                    np.array([0, 3, 1, -4], dtype=np.int32),
                    np.array([1, 2, 1, -3], dtype=np.int32),
                    np.array([[[1], [2]]], dtype=np.float32)],
                   expected=np.array([[[0, 0, 1]], [[0, 0, 0]], [[0, 0, 2]]],
                                     dtype=np.float32))

    ssg_test2 = lambda x: array_ops.strided_slice_grad(*x, new_axis_mask=0x15)
    self._testNAry(ssg_test2,
                   [np.array([4, 4], dtype=np.int32),
                    np.array([0, 0, 0, 1, 0], dtype=np.int32),
                    np.array([0, 3, 0, 4, 0], dtype=np.int32),
                    np.array([1, 2, 1, 2, 1], dtype=np.int32),
                    np.array([[[[[1], [2]]], [[[3], [4]]]]], dtype=np.float32)],
                   expected=np.array([[0, 1, 0, 2], [0, 0, 0, 0], [0, 3, 0, 4],
                                      [0, 0, 0, 0]], dtype=np.float32))

    self._testNAry(lambda x: array_ops.strided_slice_grad(*x),
                   [np.array([3, 3], dtype=np.int32),
                    np.array([0, 2], dtype=np.int32),
                    np.array([2, 0], dtype=np.int32),
                    np.array([1, -1], dtype=np.int32),
                    np.array([[1, 2], [3, 4]], dtype=np.float32)],
                   expected=np.array([[0, 2, 1], [0, 4, 3], [0, 0, 0]],
                                     dtype=np.float32))

    self._testNAry(lambda x: array_ops.strided_slice_grad(*x),
                   [np.array([3, 3], dtype=np.int32),
                    np.array([2, 2], dtype=np.int32),
                    np.array([0, 1], dtype=np.int32),
                    np.array([-1, -2], dtype=np.int32),
                    np.array([[1], [2]], dtype=np.float32)],
                   expected=np.array([[0, 0, 0], [0, 0, 2], [0, 0, 1]],
                                     dtype=np.float32))
コード例 #17
0
 def ssg_test(x):
     return array_ops.strided_slice_grad(*x,
                                         shrink_axis_mask=0x4,
                                         new_axis_mask=0x1)