コード例 #1
0
 def test_dense_input_wrong_shape_fails(self):
     x = np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32)
     weights = np.array([[3, 2], [5, 4], [4, 3]])
     # Note: Eager mode and graph mode throw different errors here. Graph mode
     # will fail with a ValueError from the shape checking logic, while Eager
     # will fail with an InvalidArgumentError from the kernel itself.
     if context.executing_eagerly():
         with self.assertRaisesRegexp(errors.InvalidArgumentError,
                                      "must have the same shape"):
             self.evaluate(
                 bincount.sparse_bincount(x, weights=weights, axis=-1))
     else:
         with self.assertRaisesRegexp(ValueError,
                                      "both shapes must be equal"):
             self.evaluate(
                 bincount.sparse_bincount(x, weights=weights, axis=-1))
コード例 #2
0
 def test_dense_input_ragged_weights_fails(self):
     x = np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32)
     weights = ragged_factory_ops.constant([[6, 0.5, 2], [14],
                                            [10, 0.25, 5, 3]])
     with self.assertRaisesRegexp(ValueError, "must be a tf.Tensor"):
         self.evaluate(bincount.sparse_bincount(x, weights=weights,
                                                axis=-1))
コード例 #3
0
 def test_ragged_input_different_shape_fails(self):
     x = ragged_factory_ops.constant([[6, 1, 2], [14], [10, 1, 5, 3]])
     weights = ragged_factory_ops.constant([[6, 0.5, 2], [],
                                            [10, 0.25, 5, 3]])
     with self.assertRaisesRegexp(errors.InvalidArgumentError,
                                  "must have the same row splits"):
         self.evaluate(bincount.sparse_bincount(x, weights=weights,
                                                axis=-1))
コード例 #4
0
 def test_ragged_input_sparse_weights_fails(self):
     x = ragged_factory_ops.constant([[6, 1, 2], [14], [10, 1, 5, 3]])
     weights = sparse_ops.from_dense(
         np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]],
                  dtype=np.int32))
     with self.assertRaisesRegexp(ValueError, "must be a RaggedTensor"):
         self.evaluate(bincount.sparse_bincount(x, weights=weights,
                                                axis=-1))
コード例 #5
0
 def test_sparse_input_dense_weights_fails(self):
     x = sparse_ops.from_dense(
         np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]],
                  dtype=np.int32))
     weights = np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32)
     with self.assertRaisesRegexp(ValueError, "must be a SparseTensor"):
         self.evaluate(bincount.sparse_bincount(x, weights=weights,
                                                axis=-1))
コード例 #6
0
 def test_sparse_input_wrong_shape_fails(self):
     x = sparse_ops.from_dense(
         np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]],
                  dtype=np.int32))
     weights = sparse_ops.from_dense(
         np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4], [0, 0, 0, 0]],
                  dtype=np.int32))
     with self.assertRaisesRegexp(errors.InvalidArgumentError,
                                  "must have the same dense shape"):
         self.evaluate(bincount.sparse_bincount(x, weights=weights,
                                                axis=-1))
コード例 #7
0
 def test_sparse_input_too_many_indices_fails(self):
     x = sparse_ops.from_dense(
         np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]],
                  dtype=np.int32))
     weights = sparse_ops.from_dense(
         np.array([[3, 1, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]],
                  dtype=np.int32))
     with self.assertRaisesRegexp(errors.InvalidArgumentError,
                                  "Incompatible shapes"):
         self.evaluate(bincount.sparse_bincount(x, weights=weights,
                                                axis=-1))
コード例 #8
0
 def test_dense_input(self,
                      x,
                      expected_indices,
                      expected_values,
                      expected_shape,
                      minlength=None,
                      maxlength=None,
                      binary_output=False,
                      weights=None,
                      axis=-1):
     y = bincount.sparse_bincount(x,
                                  weights=weights,
                                  minlength=minlength,
                                  maxlength=maxlength,
                                  binary_output=binary_output,
                                  axis=axis)
     self.assertAllEqual(expected_indices, y.indices)
     self.assertAllEqual(expected_values, y.values)
     self.assertAllEqual(expected_shape, y.dense_shape)
コード例 #9
0
 def test_ragged_input(self,
                       x,
                       expected_indices,
                       expected_values,
                       expected_shape,
                       maxlength=None,
                       minlength=None,
                       binary_count=False,
                       weights=None,
                       axis=-1):
     x_ragged = ragged_factory_ops.constant(x)
     y = bincount.sparse_bincount(x_ragged,
                                  weights=weights,
                                  minlength=minlength,
                                  maxlength=maxlength,
                                  binary_count=binary_count,
                                  axis=axis)
     self.assertAllEqual(expected_indices, y.indices)
     self.assertAllEqual(expected_values, y.values)
     self.assertAllEqual(expected_shape, y.dense_shape)
コード例 #10
0
 def test_sparse_input(self,
                       x,
                       expected_indices,
                       expected_values,
                       expected_shape,
                       maxlength=None,
                       minlength=None,
                       binary_output=False,
                       weights=None,
                       axis=-1):
     x_sparse = sparse_ops.from_dense(x)
     w_sparse = sparse_ops.from_dense(
         weights) if weights is not None else None
     y = bincount.sparse_bincount(x_sparse,
                                  weights=w_sparse,
                                  minlength=minlength,
                                  maxlength=maxlength,
                                  binary_output=binary_output,
                                  axis=axis)
     self.assertAllEqual(expected_indices, y.indices)
     self.assertAllEqual(expected_values, y.values)
     self.assertAllEqual(expected_shape, y.dense_shape)