コード例 #1
0
def compute_accidental_hits(true_classes,
                            sampled_candidates,
                            num_true,
                            seed=None,
                            name=None):
    """Compute the position ids in `sampled_candidates` matching `true_classes`.

  In Candidate Sampling, this operation facilitates virtually removing
  sampled classes which happen to match target classes.  This is done
  in Sampled Softmax and Sampled Logistic.

  See our [Candidate Sampling Algorithms
  Reference](http://www.tensorflow.org/extras/candidate_sampling.pdf).

  We presuppose that the `sampled_candidates` are unique.

  We call it an 'accidental hit' when one of the target classes
  matches one of the sampled classes.  This operation reports
  accidental hits as triples `(index, id, weight)`, where `index`
  represents the row number in `true_classes`, `id` represents the
  position in `sampled_candidates`, and weight is `-FLOAT_MAX`.

  The result of this op should be passed through a `sparse_to_dense`
  operation, then added to the logits of the sampled classes. This
  removes the contradictory effect of accidentally sampling the true
  target classes as noise classes for the same example.

  Args:
    true_classes: A `Tensor` of type `int64` and shape `[batch_size,
      num_true]`. The target classes.
    sampled_candidates: A tensor of type `int64` and shape `[num_sampled]`.
      The sampled_candidates output of CandidateSampler.
    num_true: An `int`.  The number of target classes per training example.
    seed: An `int`. An operation-specific seed. Default is 0.
    name: A name for the operation (optional).

  Returns:
    indices: A `Tensor` of type `int32` and shape `[num_accidental_hits]`.
      Values indicate rows in `true_classes`.
    ids: A `Tensor` of type `int64` and shape `[num_accidental_hits]`.
      Values indicate positions in `sampled_candidates`.
    weights: A `Tensor` of type `float` and shape `[num_accidental_hits]`.
      Each value is `-FLOAT_MAX`.

  """
    seed1, seed2 = random_seed.get_seed(seed)
    return gen_candidate_sampling_ops.compute_accidental_hits(
        true_classes,
        sampled_candidates,
        num_true,
        seed=seed1,
        seed2=seed2,
        name=name)
コード例 #2
0
def compute_accidental_hits(true_classes, sampled_candidates, num_true,
                            seed=None, name=None):
  """Compute the position ids in `sampled_candidates` matching `true_classes`.

  In Candidate Sampling, this operation facilitates virtually removing
  sampled classes which happen to match target classes.  This is done
  in Sampled Softmax and Sampled Logistic.

  See our [Candidate Sampling Algorithms
  Reference](http://www.tensorflow.org/extras/candidate_sampling.pdf).

  We presuppose that the `sampled_candidates` are unique.

  We call it an 'accidental hit' when one of the target classes
  matches one of the sampled classes.  This operation reports
  accidental hits as triples `(index, id, weight)`, where `index`
  represents the row number in `true_classes`, `id` represents the
  position in `sampled_candidates`, and weight is `-FLOAT_MAX`.

  The result of this op should be passed through a `sparse_to_dense`
  operation, then added to the logits of the sampled classes. This
  removes the contradictory effect of accidentally sampling the true
  target classes as noise classes for the same example.

  Args:
    true_classes: A `Tensor` of type `int64` and shape `[batch_size,
      num_true]`. The target classes.
    sampled_candidates: A tensor of type `int64` and shape `[num_sampled]`.
      The sampled_candidates output of CandidateSampler.
    num_true: An `int`.  The number of target classes per training example.
    seed: An `int`. An operation-specific seed. Default is 0.
    name: A name for the operation (optional).

  Returns:
    indices: A `Tensor` of type `int32` and shape `[num_accidental_hits]`.
      Values indicate rows in `true_classes`.
    ids: A `Tensor` of type `int64` and shape `[num_accidental_hits]`.
      Values indicate positions in `sampled_candidates`.
    weights: A `Tensor` of type `float` and shape `[num_accidental_hits]`.
      Each value is `-FLOAT_MAX`.

  """
  seed1, seed2 = random_seed.get_seed(seed)
  return gen_candidate_sampling_ops.compute_accidental_hits(
      true_classes, sampled_candidates, num_true, seed=seed1, seed2=seed2,
      name=name)