コード例 #1
0
ファイル: debug_v2_ops_test.py プロジェクト: MFChunga/poo
 def write_debug_trace(x):
     # DebugIdentityV2 is a stateful op. It ought to be included by auto
     # control dependency.
     square = math_ops.square(x)
     gen_debug_ops.debug_identity_v2(
         square,
         tfdbg_context_id="deadbeaf",
         tensor_debug_mode=debug_event_pb2.TensorDebugMode.FULL_TENSOR,
         debug_urls=["file://%s" % self.dump_root, another_debug_url])
     return square + 1.0
コード例 #2
0
ファイル: debug_v2_ops_test.py プロジェクト: MFChunga/poo
 def write_debug_trace(x):
     # DebugIdentityV2 is a stateful op. It ought to be included by auto
     # control dependency.
     square = math_ops.square(x)
     gen_debug_ops.debug_identity_v2(
         square,
         tfdbg_context_id="deadbeaf",
         op_name="Square",
         output_slot=0,
         tensor_debug_mode=debug_event_pb2.TensorDebugMode.FULL_TENSOR,
         debug_urls=["file://%s" % self.dump_root],
         circular_buffer_size=circular_buffer_size)
     return square
コード例 #3
0
 def collatz(x):
   counter = constant_op.constant(0, dtype=dtypes.int32)
   while math_ops.greater(x, 1):
     counter = counter + 1
     gen_debug_ops.debug_identity_v2(
         x,
         tfdbg_context_id="deadbeaf",
         op_name="x",
         output_slot=0,
         tensor_debug_mode=debug_event_pb2.TensorDebugMode.FULL_TENSOR,
         debug_urls=["file://%s" % self.dump_root])
     if math_ops.equal(x % 2, 0):
       x = math_ops.div(x, 2)
     else:
       x = x * 3 + 1
   return counter
コード例 #4
0
ファイル: debug_v2_ops_test.py プロジェクト: MFChunga/poo
        def write_debug_trace(x):
            square = math_ops.square(x)
            gen_debug_ops.debug_identity_v2(
                square,
                tfdbg_context_id="deadbeaf",
                op_name="Square",
                output_slot=0,
                tensor_debug_mode=debug_event_pb2.TensorDebugMode.FULL_TENSOR,
                debug_urls=["file://%s" % self.dump_root])

            sqrt = math_ops.sqrt(x)
            gen_debug_ops.debug_identity_v2(
                sqrt,
                tfdbg_context_id="beafdead",
                op_name="Sqrt",
                output_slot=0,
                tensor_debug_mode=debug_event_pb2.TensorDebugMode.FULL_TENSOR,
                debug_urls=["file://%s" % self.dump_root])
            return square + sqrt
コード例 #5
0
def _instrument_symbolic_tensors(tensors, op_name, tfdbg_context_id):
  """Add debugging instrumentation for symbolic (i.e., non-eager) tensors.

  The detailed fashion in which the tensors are instrumented is determined
  by the tensor_debug_mode configured for the currently enabled dumping
  callback.

  Args:
    tensors: A tuple of Tensors to instrument. It is assumed that their ordering
      corresponds to the ordering of output tensors of an original op. Output
      slot indices (0-based) will be generated based on the ordering.
    op_name: Name of the op that emits the Tensors.
    tfdbg_context_id: A unique ID for the context that the op belongs to (e.g.,
      a graph).

  Returns:
    Non-eager Tensors that override the `tensors` as the output of the op
    that originally generated `tensors`. In some cases (e.g., non-V1 graph
    mode), this may be `None`, as the instrumentation can simply rely on
    automatic control dependencies (see `auto_control_deps.py`) instead of
    tensor overriding.
  """
  if (_state.config.tensor_debug_mode ==
      debug_event_pb2.TensorDebugMode.NO_TENSOR):
    is_v1_graph_mode = not ops.executing_eagerly_outside_functions()
    instrumented_tensors = [] if is_v1_graph_mode else None
    for slot, tensor in enumerate(tensors):
      with ops.colocate_with(None, ignore_existing=True):
        # Except in V1 graph mode + control flow, debug_identity_v2 trigger auto
        # control dependency because it's a stateful op.
        debug_tensor = gen_debug_ops.debug_identity_v2(
            # Use an empty (shape=[0]) float32 tensor for the NO_TENSOR mode.
            constant_op.constant([], dtype=dtypes.float32),
            tfdbg_context_id=tfdbg_context_id,
            op_name=op_name,
            output_slot=slot,
            tensor_debug_mode=_state.config.tensor_debug_mode,
            debug_urls=["file://%s" % _state.config.dump_root])
        if is_v1_graph_mode:
          # TODO(cais): Evaluate performance optimization options. For the
          # `NO_TENSOR` debug mode, an alternative is to add `debug_tensor` as a
          # control dependency of `tensor.op` without an additional identity op.
          identity = array_ops.identity(tensor)
          identity.op._add_control_input(  # pylint: disable=protected-access
              debug_tensor.op)
          instrumented_tensors.append(identity)
    return instrumented_tensors
  else:
    raise NotImplementedError(
        "Symbolic tensor instrumentation is not implemented for debug mode %s" %
        _state.config.tensor_debug_mode)
コード例 #6
0
    def callback(self,
                 op_type,
                 inputs,
                 attrs,
                 outputs,
                 op_name=None,
                 graph=None):
        if op_name is not None and self._op_regex.match(op_name):
            graph_name = "missing-graph-name"
            if graph is not None and hasattr(graph, "name"):
                graph_name = graph.name

            logging.info(
                "Adding dump op for '%s' of type '%s' from graph '%s'" %
                (op_name, op_type, graph_name))

            new_outputs = []

            for output_slot, output in enumerate(outputs):
                if self._output_regex is not None and not self._output_regex.match(
                        output.name):
                    logging.info("Skipped output: " + output.name)
                    new_outputs.append(output)
                    continue
                debug_identity_op_kwargs = {
                    "tfdbg_context_id": graph_name,
                    "op_name": op_name,
                    "output_slot": output_slot,
                    "tensor_debug_mode": self._tensor_debug_mode,
                    "debug_urls": ["file://%s" % self._dump_root],
                    "name": "dump_%d" % self._dump_op_counter
                }

                if not tf.__version__.startswith("2.2"):
                    debug_identity_op_kwargs[
                        "circular_buffer_size"] = self._circular_buffer_size
                    debug_identity_op_kwargs[
                        "tfdbg_run_id"] = self._tfdbg_run_id

                self._dump_op_counter = self._dump_op_counter + 1
                new_outputs.append(
                    gen_debug_ops.debug_identity_v2(
                        output, **debug_identity_op_kwargs))

            return new_outputs
        else:
            return None
コード例 #7
0
    def _instrument_symbolic_tensors(self, tensors, op_type, op_name,
                                     tfdbg_context_id, tensor_ids):
        """Add debugging instrumentation for symbolic (i.e., non-eager) tensors.

    The detailed fashion in which the tensors are instrumented is determined
    by the tensor_debug_mode configured for the currently enabled dumping
    callback.

    Args:
      tensors: A tuple of Tensors to instrument. It is assumed that their
        ordering corresponds to the ordering of output tensors of an original
        op. Output slot indices (0-based) will be generated based on the
        ordering.
      op_type: Type name of the op that emits the Tensors (e.g., "MatMul").
      op_name: Name of the op that emits the Tensors (e.g., "dense_1/MatMul").
      tfdbg_context_id: A unique ID for the context that the op belongs to
        (e.g., a graph).
      tensor_ids: A list of unique ID numbers for the tensors, for tfdbg's
        internal use.

    Returns:
      Non-eager Tensors that override the `tensors` as the output of the op
      that originally generated `tensors`. In some cases (e.g., non-V1 graph
      mode), this may be `None`, as the instrumentation can simply rely on
      automatic control dependencies (see `auto_control_deps.py`) instead of
      tensor overriding.
    """
        # TODO(b/144441464, b/144440920, b/144440922): Make use of it.

        tensor_debug_mode = self._tensor_debug_mode
        debug_urls = ["file://%s" % self._dump_root]
        is_v1_graph_mode = not ops.executing_eagerly_outside_functions()
        instrumented_tensors = [] if is_v1_graph_mode else None
        if tensor_debug_mode == debug_event_pb2.TensorDebugMode.NO_TENSOR:
            for output_slot, tensor in enumerate(tensors):
                if (not self._should_dump_tensor(op_type, tensor.dtype)
                        or not tensor.dtype.is_numpy_compatible):
                    # Instrumenting DT_VARIANT and DT_RESOURCE type tensors under
                    # V1 graph mode is known to have issues. TODO(cais): Investigate.
                    if is_v1_graph_mode:
                        instrumented_tensors.append(tensor)
                    continue
                if is_v1_graph_mode and not tensor.dtype.is_numpy_compatible:
                    instrumented_tensors.append(tensor)
                    continue
                # Except in V1 graph mode + control flow, debug_identity_v2 trigger auto
                # control dependency because it's a stateful op.
                debug_tensor = gen_debug_ops.debug_identity_v2(
                    # Use an empty (shape=[0]) float32 tensor for the NO_TENSOR mode
                    # as a low-overhead placeholder, since no actual tensor value is
                    # traced.
                    constant_op.constant([], dtype=dtypes.float32),
                    tfdbg_context_id=tfdbg_context_id,
                    op_name=op_name,
                    output_slot=output_slot,
                    tensor_debug_mode=self._tensor_debug_mode,
                    debug_urls=debug_urls)
                if is_v1_graph_mode:
                    # TODO(cais): Evaluate performance optimization options. For the
                    # `NO_TENSOR` debug mode, an alternative is to add `debug_tensor` as a
                    # control dependency of `tensor.op` without an additional identity op.
                    identity = array_ops.identity(tensor)
                    identity.op._add_control_input(  # pylint: disable=protected-access
                        debug_tensor.op)
                    instrumented_tensors.append(identity)
            return instrumented_tensors
        elif tensor_debug_mode in (
                debug_event_pb2.TensorDebugMode.CURT_HEALTH,
                debug_event_pb2.TensorDebugMode.CONCISE_HEALTH,
                debug_event_pb2.TensorDebugMode.SHAPE):
            for output_slot, tensor in enumerate(tensors):
                dtype = tensor.dtype
                dtype_is_dumpable = (
                    tensor_debug_mode
                    in (debug_event_pb2.TensorDebugMode.CURT_HEALTH,
                        debug_event_pb2.TensorDebugMode.CONCISE_HEALTH)
                    and dtype.is_floating or tensor_debug_mode
                    == debug_event_pb2.TensorDebugMode.SHAPE and
                    (dtype.is_floating or dtype.is_integer or dtype.is_bool))
                if (not self._should_dump_tensor(op_type, tensor.dtype)
                        or not dtype_is_dumpable):
                    if is_v1_graph_mode:
                        instrumented_tensors.append(tensor)
                    continue
                debug_tensor = gen_debug_ops.debug_identity_v2(
                    gen_debug_ops.debug_numeric_summary_v2(
                        tensor,
                        tensor_id=tensor_ids[output_slot],
                        tensor_debug_mode=self._tensor_debug_mode,
                        output_dtype=dtypes.float64),
                    tfdbg_context_id=tfdbg_context_id,
                    op_name=op_name,
                    output_slot=output_slot,
                    tensor_debug_mode=self._tensor_debug_mode,
                    debug_urls=debug_urls)
                if is_v1_graph_mode:
                    identity = array_ops.identity(tensor)
                    identity.op._add_control_input(  # pylint: disable=protected-access
                        debug_tensor.op)
                    instrumented_tensors.append(identity)
            return instrumented_tensors
        elif tensor_debug_mode == debug_event_pb2.TensorDebugMode.FULL_TENSOR:
            for output_slot, tensor in enumerate(tensors):
                if (not self._should_dump_tensor(op_type, tensor.dtype)
                        or not tensor.dtype.is_numpy_compatible):
                    # Instrumenting DT_VARIANT and DT_RESOURCE type tensors under
                    # V1 graph mode is known to have issues. TODO(cais): Investigate.
                    if is_v1_graph_mode:
                        instrumented_tensors.append(tensor)
                    continue
                debug_tensor = gen_debug_ops.debug_identity_v2(
                    tensor,
                    tfdbg_context_id=tfdbg_context_id,
                    op_name=op_name,
                    output_slot=output_slot,
                    tensor_debug_mode=self._tensor_debug_mode,
                    debug_urls=debug_urls)
                if is_v1_graph_mode:
                    instrumented_tensors.append(debug_tensor)
            return instrumented_tensors
        else:
            raise NotImplementedError(
                "Symbolic tensor instrumentation is not implemented for debug mode "
                "%s" % self._tensor_debug_mode)
コード例 #8
0
    def _instrument_symbolic_tensors(self, tensors, op_type, op_name,
                                     tfdbg_context_id, tensor_ids):
        """Add debugging instrumentation for symbolic (i.e., non-eager) tensors.

    The detailed fashion in which the tensors are instrumented is determined
    by the tensor_debug_mode configured for the currently enabled dumping
    callback.

    Args:
      tensors: A tuple of Tensors to instrument. It is assumed that their
        ordering corresponds to the ordering of output tensors of an original
        op. Output slot indices (0-based) will be generated based on the
        ordering.
      op_type: Type name of the op that emits the Tensors (e.g., "MatMul").
      op_name: Name of the op that emits the Tensors (e.g., "dense_1/MatMul").
      tfdbg_context_id: A unique ID for the context that the op belongs to
        (e.g., a graph).
      tensor_ids: A list of unique ID numbers for the tensors, for tfdbg's
        internal use.

    Returns:
      Non-eager Tensors that override the `tensors` as the output of the op
      that originally generated `tensors`. In some cases (e.g., non-V1 graph
      mode), this may be `None`, as the instrumentation can simply rely on
      automatic control dependencies (see `auto_control_deps.py`) instead of
      tensor overriding.
    """
        tensor_debug_mode = self._tensor_debug_mode
        debug_urls = ["file://%s" % self._dump_root]
        is_v1_graph_mode = not ops.executing_eagerly_outside_functions()
        instrumented_tensors = [] if is_v1_graph_mode else None
        for output_slot, tensor in enumerate(tensors):
            with self._symbolic_tensor_counter_lock:
                debug_identity_name = ("DebugIdentityV2_%d" %
                                       self._symbolic_tensor_counter)
            debug_identity_op_kwargs = {
                "tfdbg_context_id": tfdbg_context_id,
                "op_name": op_name,
                "output_slot": output_slot,
                "tensor_debug_mode": self._tensor_debug_mode,
                "debug_urls": debug_urls,
                "name": debug_identity_name,
            }
            if tf_compat.forward_compatible(2020, 6, 24):
                debug_identity_op_kwargs[
                    "circular_buffer_size"] = self._circular_buffer_size
            if tf_compat.forward_compatible(2020, 7, 1):
                debug_identity_op_kwargs["tfdbg_run_id"] = self._tfdbg_run_id
            if tensor_debug_mode == debug_event_pb2.TensorDebugMode.NO_TENSOR:
                if (not self._should_dump_tensor(op_type, tensor.dtype)
                        or not tensor.dtype.is_numpy_compatible):
                    if is_v1_graph_mode:
                        instrumented_tensors.append(tensor)
                    continue
                if is_v1_graph_mode and not tensor.dtype.is_numpy_compatible:
                    # Avoid instrumenting Placeholder under is_v1_graph_mode. Doing that
                    # would cause runtime complaint about Placeholders not being fed.
                    instrumented_tensors.append(tensor)
                    continue
                # Except in V1 graph mode + control flow, debug_identity_v2 triggers
                # auto control dependency because it's a stateful op.
                debug_tensor = gen_debug_ops.debug_identity_v2(
                    # Use an empty (shape=[0]) float32 tensor for the NO_TENSOR mode
                    # as a low-overhead placeholder, since no actual tensor value is
                    # traced.
                    constant_op.constant([], dtype=dtypes.float32),
                    **debug_identity_op_kwargs)
                if is_v1_graph_mode:
                    instrumented_tensors.append(
                        self._process_v1_graph_mode_tensor(
                            op_type, tensor, debug_tensor, tensor_debug_mode))
            elif tensor_debug_mode in (
                    debug_event_pb2.TensorDebugMode.CURT_HEALTH,
                    debug_event_pb2.TensorDebugMode.CONCISE_HEALTH,
                    debug_event_pb2.TensorDebugMode.FULL_HEALTH,
                    debug_event_pb2.TensorDebugMode.SHAPE):
                dtype = tensor.dtype
                dtype_is_dumpable = (
                    tensor_debug_mode
                    in (debug_event_pb2.TensorDebugMode.CURT_HEALTH,
                        debug_event_pb2.TensorDebugMode.CONCISE_HEALTH,
                        debug_event_pb2.TensorDebugMode.FULL_HEALTH)
                    and dtype.is_floating or tensor_debug_mode
                    == debug_event_pb2.TensorDebugMode.SHAPE and
                    (dtype.is_floating or dtype.is_integer or dtype.is_bool))
                if (not self._should_dump_tensor(op_type, tensor.dtype)
                        or not dtype_is_dumpable):
                    if is_v1_graph_mode:
                        instrumented_tensors.append(tensor)
                    continue
                debug_tensor = gen_debug_ops.debug_identity_v2(
                    gen_debug_ops.debug_numeric_summary_v2(
                        tensor,
                        tensor_id=tensor_ids[output_slot],
                        tensor_debug_mode=self._tensor_debug_mode,
                        output_dtype=dtypes.float64),
                    **debug_identity_op_kwargs)
                if is_v1_graph_mode:
                    instrumented_tensors.append(
                        self._process_v1_graph_mode_tensor(
                            op_type, tensor, debug_tensor, tensor_debug_mode))
            elif tensor_debug_mode == debug_event_pb2.TensorDebugMode.FULL_TENSOR:
                if (not self._should_dump_tensor(op_type, tensor.dtype)
                        or not tensor.dtype.is_numpy_compatible):
                    # Instrumenting DT_VARIANT and DT_RESOURCE type tensors under
                    # V1 graph mode is known to have issues. TODO(cais): Investigate.
                    if is_v1_graph_mode:
                        instrumented_tensors.append(tensor)
                    continue
                debug_tensor = gen_debug_ops.debug_identity_v2(
                    tensor, **debug_identity_op_kwargs)
                if is_v1_graph_mode:
                    instrumented_tensors.append(
                        self._process_v1_graph_mode_tensor(
                            op_type, tensor, debug_tensor, tensor_debug_mode))
            else:
                raise NotImplementedError(
                    "Symbolic tensor instrumentation is not implemented for debug mode "
                    "%s" % self._tensor_debug_mode)
        return instrumented_tensors