def string_to_number_v1(string_tensor=None, out_type=dtypes.float32, name=None, input=None): string_tensor = deprecation.deprecated_argument_lookup( "input", input, "string_tensor", string_tensor) return gen_parsing_ops.string_to_number(string_tensor, out_type, name)
def _tf_int(x, base): if base not in (10, UNSPECIFIED): raise NotImplementedError('base {} not supported for int'.format(base)) # TODO(mdan): We shouldn't assume int32. if x.dtype == dtypes.string: return gen_parsing_ops.string_to_number(x, out_type=dtypes.int32) return math_ops.cast(x, dtype=dtypes.int32)
def string_to_number_v1( string_tensor=None, out_type=dtypes.float32, name=None, input=None): string_tensor = deprecation.deprecated_argument_lookup( "input", input, "string_tensor", string_tensor) return gen_parsing_ops.string_to_number(string_tensor, out_type, name)
def string_to_number(input, out_type=dtypes.float32, name=None): r"""Converts each string in the input Tensor to the specified numeric type. (Note that int32 overflow results in an error while float overflow results in a rounded value.) Args: input: A `Tensor` of type `string`. out_type: An optional `tf.DType` from: `tf.float32, tf.float64, tf.int32, tf.int64`. Defaults to `tf.float32`. The numeric type to interpret each string in `string_tensor` as. name: A name for the operation (optional). Returns: A `Tensor` of type `out_type`. """ return gen_parsing_ops.string_to_number(input, out_type, name)
def _tf_float(x): # TODO(mdan): We shouldn't assume float32. if x.dtype == dtypes.string: return gen_parsing_ops.string_to_number(x, out_type=dtypes.float32) return math_ops.cast(x, dtype=dtypes.float32)