def test_defining_spd_operator_by_taking_real_part(self): with self.test_session() as sess: # S is real and positive. s = linear_operator_test_util.random_uniform( shape=(10, 2, 3, 4), dtype=dtypes.float32, minval=1., maxval=2.) # Let S = S1 + S2, the Hermitian and anti-hermitian parts. # S1 = 0.5 * (S + S^H), S2 = 0.5 * (S - S^H), # where ^H is the Hermitian transpose of the function: # f(n0, n1, n2)^H := ComplexConjugate[f(N0-n0, N1-n1, N2-n2)]. # We want to isolate S1, since # S1 is Hermitian by construction # S1 is real since S is # S1 is positive since it is the sum of two positive kernels # IDFT[S] = IDFT[S1] + IDFT[S2] # = H1 + H2 # where H1 is real since it is Hermitian, # and H2 is imaginary since it is anti-Hermitian. ifft_s = math_ops.ifft3d(math_ops.cast(s, dtypes.complex64)) # Throw away H2, keep H1. real_ifft_s = math_ops.real(ifft_s) # This is the perfect spectrum! # spectrum = DFT[H1] # = S1, fft_real_ifft_s = math_ops.fft3d( math_ops.cast(real_ifft_s, dtypes.complex64)) # S1 is Hermitian ==> operator is real. # S1 is real ==> operator is self-adjoint. # S1 is positive ==> operator is positive-definite. operator = linalg.LinearOperatorCirculant3D(fft_real_ifft_s) # Allow for complex output so we can check operator has zero imag part. self.assertEqual(operator.dtype, dtypes.complex64) matrix, matrix_t = sess.run([ operator.to_dense(), array_ops.matrix_transpose(operator.to_dense()) ]) operator.assert_positive_definite().run() # Should not fail. np.testing.assert_allclose(0, np.imag(matrix), atol=1e-6) self.assertAllClose(matrix, matrix_t) # Just to test the theory, get S2 as well. # This should create an imaginary operator. # S2 is anti-Hermitian ==> operator is imaginary. # S2 is real ==> operator is self-adjoint. imag_ifft_s = math_ops.imag(ifft_s) fft_imag_ifft_s = math_ops.fft3d( 1j * math_ops.cast(imag_ifft_s, dtypes.complex64)) operator_imag = linalg.LinearOperatorCirculant3D(fft_imag_ifft_s) matrix, matrix_h = sess.run([ operator_imag.to_dense(), array_ops.matrix_transpose(math_ops.conj(operator_imag.to_dense())) ]) self.assertAllClose(matrix, matrix_h) np.testing.assert_allclose(0, np.real(matrix), atol=1e-7)
def _FFT3DGrad(_, grad): size = math_ops.cast(array_ops.size(grad), dtypes.float32) return math_ops.ifft3d(grad) * math_ops.complex(size, 0.)
def _FFT3DGrad(_, grad): size = math_ops.cast(_FFTSizeForGrad(grad, 3), dtypes.float32) return math_ops.ifft3d(grad) * math_ops.complex(size, 0.)
def test_defining_spd_operator_by_taking_real_part(self): with self.cached_session() as sess: # S is real and positive. s = linear_operator_test_util.random_uniform(shape=(10, 2, 3, 4), dtype=dtypes.float32, minval=1., maxval=2.) # Let S = S1 + S2, the Hermitian and anti-hermitian parts. # S1 = 0.5 * (S + S^H), S2 = 0.5 * (S - S^H), # where ^H is the Hermitian transpose of the function: # f(n0, n1, n2)^H := ComplexConjugate[f(N0-n0, N1-n1, N2-n2)]. # We want to isolate S1, since # S1 is Hermitian by construction # S1 is real since S is # S1 is positive since it is the sum of two positive kernels # IDFT[S] = IDFT[S1] + IDFT[S2] # = H1 + H2 # where H1 is real since it is Hermitian, # and H2 is imaginary since it is anti-Hermitian. ifft_s = math_ops.ifft3d(math_ops.cast(s, dtypes.complex64)) # Throw away H2, keep H1. real_ifft_s = math_ops.real(ifft_s) # This is the perfect spectrum! # spectrum = DFT[H1] # = S1, fft_real_ifft_s = math_ops.fft3d( math_ops.cast(real_ifft_s, dtypes.complex64)) # S1 is Hermitian ==> operator is real. # S1 is real ==> operator is self-adjoint. # S1 is positive ==> operator is positive-definite. operator = linalg.LinearOperatorCirculant3D(fft_real_ifft_s) # Allow for complex output so we can check operator has zero imag part. self.assertEqual(operator.dtype, dtypes.complex64) matrix, matrix_t = sess.run([ operator.to_dense(), array_ops.matrix_transpose(operator.to_dense()) ]) operator.assert_positive_definite().run() # Should not fail. np.testing.assert_allclose(0, np.imag(matrix), atol=1e-6) self.assertAllClose(matrix, matrix_t) # Just to test the theory, get S2 as well. # This should create an imaginary operator. # S2 is anti-Hermitian ==> operator is imaginary. # S2 is real ==> operator is self-adjoint. imag_ifft_s = math_ops.imag(ifft_s) fft_imag_ifft_s = math_ops.fft3d( 1j * math_ops.cast(imag_ifft_s, dtypes.complex64)) operator_imag = linalg.LinearOperatorCirculant3D(fft_imag_ifft_s) matrix, matrix_h = sess.run([ operator_imag.to_dense(), array_ops.matrix_transpose( math_ops.conj(operator_imag.to_dense())) ]) self.assertAllClose(matrix, matrix_h) np.testing.assert_allclose(0, np.real(matrix), atol=1e-7)