コード例 #1
0
def bce_of_true_positive(y_true,
                         y_pred,
                         from_logits=False,
                         _sentinel=None,
                         name=None):
    if not from_logits:
        _epsilon = tf.convert_to_tensor(epsilon(), y_pred.dtype.base_dtype)
        output = tf.clip_by_value(y_pred, _epsilon, 1 - _epsilon)
        output = tf.log(output / (1 - output))

    # alteration of sigmoid_crossentroy_with_logits
    nn_ops._ensure_xent_args("sigmoid_cross_entropy_with_logits", _sentinel,
                             y_true, y_pred)

    with ops.name_scope(name, "logistic_loss_over_true_positives",
                        [y_pred, y_true]) as name:
        logits = ops.convert_to_tensor(y_pred, name="logits")
        labels = ops.convert_to_tensor(y_true, name="labels")
        try:
            labels.get_shape().merge_with(logits.get_shape())
        except ValueError:
            raise ValueError(
                "Logits and labels must have the same shape (%s vs %s)" %
                (logits.get_shape(), labels.get_shape()))
        zeros = array_ops.zeros_like(logits, dtype=logits.dtype)
        cond = (logits >= zeros)
        relu_logits = array_ops.where(cond, logits, zeros)
        neg_abs_logits = array_ops.where(cond, -logits, logits)

        # here we calculate the mean to be in-line with Keras' binary crossentropy.
        return K.mean(
            math_ops.multiply(-labels,
                              math_ops.log1p(math_ops.exp(neg_abs_logits)),
                              name=name))
コード例 #2
0
ファイル: metrics.py プロジェクト: micbia/SegU-Net
def sigmoid_balanced_cross_entropy_with_logits(_sentinel=None,
                                               labels=None,
                                               logits=None,
                                               beta=None,
                                               name=None):
    nn_ops._ensure_xent_args("sigmoid_cross_entropy_with_logits", _sentinel,
                             labels, logits)
    with ops.name_scope(name, "logistic_loss", [logits, labels]) as name:
        logits = ops.convert_to_tensor(logits, name="logits")
        labels = ops.convert_to_tensor(labels, name="labels")
        try:
            labels.get_shape().merge_with(logits.get_shape())
        except ValueError:
            raise ValueError(
                "logits and labels must have the same shape (%s vs %s)" %
                (logits.get_shape(), labels.get_shape()))
        zeros = array_ops.zeros_like(logits, dtype=logits.dtype)
        cond = (logits >= zeros)
        relu_logits = array_ops.where(cond, logits, zeros)
        neg_abs_logits = array_ops.where(cond, -logits, logits)
        #beta=0.5
        balanced_cross_entropy = relu_logits * (
            1. - beta) - logits * labels * (1. - beta) + math_ops.log1p(
                math_ops.exp(neg_abs_logits)) * ((1. - beta) *
                                                 (1. - labels) + beta * labels)
        return tf.reduce_mean(balanced_cross_entropy)
コード例 #3
0
def sigmoid_cross_entropy_with_logits(  # pylint: disable=invalid-name
        _sentinel=None,
        labels=None,
        logits=None,
        name=None,
        fp_rate=None,
        fn_rate=None):
    """Computes sigmoid cross entropy given `logits`.
  Measures the probability error in discrete classification tasks in which each
  class is independent and not mutually exclusive.  For instance, one could
  perform multilabel classification where a picture can contain both an elephant
  and a dog at the same time.
  For brevity, let `x = logits`, `z = labels`.  The logistic loss is
        z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
      = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
      = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
      = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
      = (1 - z) * x + log(1 + exp(-x))
      = x - x * z + log(1 + exp(-x))
  For x < 0, to avoid overflow in exp(-x), we reformulate the above
        x - x * z + log(1 + exp(-x))
      = log(exp(x)) - x * z + log(1 + exp(-x))
      = - x * z + log(1 + exp(x))
  Hence, to ensure stability and avoid overflow, the implementation uses this
  equivalent formulation
      max(x, 0) - x * z + log(1 + exp(-abs(x)))
  `logits` and `labels` must have the same type and shape.
  Args:
    _sentinel: Used to prevent positional parameters. Internal, do not use.
    labels: A `Tensor` of the same type and shape as `logits`.
    logits: A `Tensor` of type `float32` or `float64`.
    name: A name for the operation (optional).
  Returns:
    A `Tensor` of the same shape as `logits` with the componentwise
    logistic losses.
  Raises:
    ValueError: If `logits` and `labels` do not have the same shape.
  """
    # pylint: disable=protected-access
    nn_ops._ensure_xent_args("sigmoid_cross_entropy_with_logits", _sentinel,
                             labels, logits)
    # pylint: enable=protected-access

    with ops.name_scope(name, "logistic_loss", [logits, labels]) as name:
        logits = ops.convert_to_tensor(logits, name="logits")
        labels = ops.convert_to_tensor(labels, name="labels")
        try:
            labels.get_shape().merge_with(logits.get_shape())
        except ValueError:
            raise ValueError(
                "logits and labels must have the same shape (%s vs %s)" %
                (logits.get_shape(), labels.get_shape()))

        # The logistic loss formula from above is
        #   x - x * z + log(1 + exp(-x))
        # For x < 0, a more numerically stable formula is
        #   -x * z + log(1 + exp(x))
        # Note that these two expressions can be combined into the following:
        #   max(x, 0) - x * z + log(1 + exp(-abs(x)))
        # To allow computing gradients at zero, we define custom versions of max and
        # abs functions.
        zeros = array_ops.zeros_like(logits, dtype=logits.dtype)
        ones = array_ops.ones_like(logits, dtype=logits.dtype)
        cond = (logits >= zeros)
        #print (cond)
        relu_logits = array_ops.where(cond, logits, zeros)
        neg_abs_logits = array_ops.where(cond, -logits, logits)
        fn_cond = math_ops.logical_and(labels > zeros, logits < zeros)
        fp_cond = math_ops.logical_and(labels <= zeros, logits >= zeros)
        fn_cost = fn_rate * math_ops.cast(fn_cond, dtypes.float32)
        fp_cost = fp_rate * math_ops.cast(fp_cond, dtypes.float32)

        pos_loss = logits - logits * labels + labels * math_ops.log1p(
            math_ops.exp(-logits + fn_cost)) + (
                (ones - labels) *
                math_ops.log1p(math_ops.exp(-logits + fp_cost)))
        neg_loss = -logits * labels + labels * math_ops.log(
            math_ops.exp(logits) + math_ops.exp(fn_cost)) + (
                (ones - labels) *
                math_ops.log(math_ops.exp(logits) + math_ops.exp(fp_cost)))

        return array_ops.where(cond, pos_loss, neg_loss,
                               name=name), fn_cost, fp_cost
コード例 #4
0
def weighted_cel(
    _sentinel=None,
    labels=None,
    logits=None,
    bound=2.0,
    name=None):
  """
  Inspired strongly by tensorflow :sigmoid_cross_entropy_with_logits
  https://github.com/tensorflow/tensorflow/blob/v2.3.1/tensorflow/python/ops/nn_impl.py#L196-L244

  Version with weighted CEL(Cross-Entropy Loss)
  https://arxiv.org/pdf/1705.02315

  Starting from CEL from TF
  For brevity, let `x = logits`, `z = labels`.  The logistic loss is
        z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
      = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
      = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
      = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))                   (4)
      = (1 - z) * x + log(1 + exp(-x))
      = x - x * z + log(1 + exp(-x))
  For x < 0, to avoid overflow in exp(-x), we reformulate the above
        x - x * z + log(1 + exp(-x))
      = log(exp(x)) - x * z + log(1 + exp(-x))
      = - x * z + log(1 + exp(x))
  Hence, to ensure stability and avoid overflow, the implementation uses this
  equivalent formulation
      max(x, 0) - x * z + log(1 + exp(-abs(x)))

  weighted CEL:
  For x > 0 (from (4)):
   = B_p * [z * -log( 1 + exp(-x) )] + B_n * [(1 - z) * (x + log(1 + exp(-x)))]
  For x < 0 (from (4)):
   = B_p * [z * log( exp(x) / (1 + exp(x)) )] + B_n * [(1 - z) *(x + log( exp(x) / (1 + exp(x))))]
   = B_p * [z * log(1 + exp(x)) - x] + B_n * [(1 - z) * log( (1 + exp(x))))]
  Hence, to ensure stability and avoid overflow, the implementation uses this
  equivalent formulation
   = B_p * [z * log(1 + exp(-x)) + min(0,x) ] + B_n * [(1 - z) * (max(0,x) + log( (1 + exp(-x)))))]

  Args:
    _sentinel: Used to prevent positional parameters. Internal, do not use.
    labels: A `Tensor` of the same type and shape as `logits`.
    logits: A `Tensor` of type `float32` or `float64`.
    name: A name for the operation (optional).
  Returns:
    A `Tensor` of the same shape as `logits` with the componentwise
    logistic losses.
  Raises:
    ValueError: If `logits` and `labels` do not have the same shape.
  """
  nn_ops._ensure_xent_args("sigmoid_cross_entropy_with_logits", _sentinel,
                           labels, logits)

  with ops.name_scope(name, "weighted_logistic_loss", [logits, labels]) as name:
    logits = ops.convert_to_tensor(logits, name="logits")
    labels = ops.convert_to_tensor(labels, name="labels")
    try:
      labels.get_shape().merge_with(logits.get_shape())
    except ValueError:
      raise ValueError("logits and labels must have the same shape (%s vs %s)" %
                       (logits.get_shape(), labels.get_shape()))

    cnt_one = tf.cast(tf.reduce_sum(labels),tf.float32)
    cnt_zero = tf.cast(tf.size(logits),tf.float32) - cnt_one
    beta_p = tf.cast((cnt_one + cnt_zero) / cnt_one, tf.float32)
    beta_n = tf.cast((cnt_one + cnt_zero) / cnt_zero, tf.float32)
    beta_n = math_ops.minimum(bound, beta_n)
    beta_p = math_ops.minimum(bound, beta_p)
    zeros = array_ops.zeros_like(logits, dtype=logits.dtype)
    cond = (logits >= zeros)
    relu_logits = array_ops.where(cond, logits, zeros)
    not_relu_logits = array_ops.where(cond, zeros, logits)
    abs_logits = math_ops.abs(logits)
    A = beta_p * (labels * (math_ops.log1p(math_ops.exp(-abs_logits)) - not_relu_logits))
    B = beta_n * ((1.0-labels) * (relu_logits + math_ops.log1p(math_ops.exp(-abs_logits))))
    return math_ops.add(A, B, name=name)
コード例 #5
0
ファイル: nn_impl.py プロジェクト: pcm17/tensorflow
def sigmoid_cross_entropy_with_logits(_sentinel=None,  # pylint: disable=invalid-name
                                      labels=None, logits=None,
                                      name=None):
  """Computes sigmoid cross entropy given `logits`.

  Measures the probability error in discrete classification tasks in which each
  class is independent and not mutually exclusive.  For instance, one could
  perform multilabel classification where a picture can contain both an elephant
  and a dog at the same time.

  For brevity, let `x = logits`, `z = labels`.  The logistic loss is

        z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
      = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
      = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
      = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
      = (1 - z) * x + log(1 + exp(-x))
      = x - x * z + log(1 + exp(-x))

  For x < 0, to avoid overflow in exp(-x), we reformulate the above

        x - x * z + log(1 + exp(-x))
      = log(exp(x)) - x * z + log(1 + exp(-x))
      = - x * z + log(1 + exp(x))

  Hence, to ensure stability and avoid overflow, the implementation uses this
  equivalent formulation

      max(x, 0) - x * z + log(1 + exp(-abs(x)))

  `logits` and `labels` must have the same type and shape.

  Args:
    _sentinel: Used to prevent positional parameters. Internal, do not use.
    labels: A `Tensor` of the same type and shape as `logits`.
    logits: A `Tensor` of type `float32` or `float64`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of the same shape as `logits` with the componentwise
    logistic losses.

  Raises:
    ValueError: If `logits` and `labels` do not have the same shape.
  """
  # pylint: disable=protected-access
  nn_ops._ensure_xent_args("sigmoid_cross_entropy_with_logits",
                           _sentinel, labels, logits)
  # pylint: enable=protected-access

  with ops.name_scope(name, "logistic_loss", [logits, labels]) as name:
    logits = ops.convert_to_tensor(logits, name="logits")
    labels = ops.convert_to_tensor(labels, name="labels")
    try:
      labels.get_shape().merge_with(logits.get_shape())
    except ValueError:
      raise ValueError("logits and labels must have the same shape (%s vs %s)"
                       % (logits.get_shape(), labels.get_shape()))

    # The logistic loss formula from above is
    #   x - x * z + log(1 + exp(-x))
    # For x < 0, a more numerically stable formula is
    #   -x * z + log(1 + exp(x))
    # Note that these two expressions can be combined into the following:
    #   max(x, 0) - x * z + log(1 + exp(-abs(x)))
    # To allow computing gradients at zero, we define custom versions of max and
    # abs functions.
    zeros = array_ops.zeros_like(logits, dtype=logits.dtype)
    cond = (logits >= zeros)
    relu_logits = array_ops.where(cond, logits, zeros)
    neg_abs_logits = array_ops.where(cond, -logits, logits)
    return math_ops.add(relu_logits - logits * labels,
                        math_ops.log1p(math_ops.exp(neg_abs_logits)),
                        name=name)
コード例 #6
0
def focal_sigmoid_cross_entropy_with_logits(  # pylint: disable=invalid-name
        _sentinel=None,
        labels=None,
        logits=None,
        alpha=0.5,
        gamma=0.0,
        name=None):
    """Computes focal sigmoid cross entropy given `logits`.

  Measures the probability error in discrete classification tasks in which each
  class is independent and not mutually exclusive.  For instance, one could
  perform multilabel classification where a picture can contain both an elephant
  and a dog at the same time.

  For brevity, let `x = logits`, `z = labels`.  For `every row`, the logistic loss is
  
  If the background label(z[baich_i][0]) is 0: 
        row_result = - labels * alpha * tf.pow(1.0 - sigmoid_x, gamma_array) * tf.log(sigmoid_x) \
                     - (1.0 - labels) * alpha * tf.pow(sigmoid_x, gamma_array) * tf.log(1.0 - sigmoid_x)
  If the background label(z[baich_i][0]) is 1: 
        row_result = - labels * (1.0 - alpha) * tf.pow(1.0 - sigmoid_x, gamma_array) * tf.log(sigmoid_x) \
                     - (1.0 - labels) * (1.0 - alpha) * tf.pow(sigmoid_x, gamma_array) * tf.log(1.0 - sigmoid_x)
  
  `logits` and `labels` must have the same type and shape.

  Args:
    _sentinel: Used to prevent positional parameters. Internal, do not use.
    labels: A `Tensor` of the same type and shape as `logits`.
    logits: A `Tensor` of type `float32` or `float64`. 
      It must be a tensor of shape [num_batch, num_classes], and first class is background.
    alpha: weighting factor for positive class.
    gamma: focusing parameter in focal loss. 
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of the same shape as `logits` with the componentwise
    logistic losses.

  Raises:
    ValueError: If `logits` and `labels` do not have the same shape.
  """
    # pylint: disable=protected-access
    nn_ops._ensure_xent_args("focal_sigmoid_cross_entropy_with_logits",
                             _sentinel, labels, logits)
    # pylint: enable=protected-access

    with ops.name_scope(name, "logistic_loss", [logits, labels]) as name:
        logits = ops.convert_to_tensor(logits, name="logits")
        labels = ops.convert_to_tensor(labels, name="labels")
        try:
            labels.get_shape().merge_with(logits.get_shape())
        except ValueError:
            raise ValueError(
                "logits and labels must have the same shape (%s vs %s)" %
                (logits.get_shape(), labels.get_shape()))
        if len(labels.get_shape().as_list()) != 2:
            raise ValueError(
                "logits and labels must have two dim: [num_batch, num_classes], but the shape is %s "
                % (logits.get_shape()))

        sigmoid_x = tf.sigmoid(logits)
        log_sigmoid_x = tf.log_sigmoid(logits)

        background_col = tf.slice(labels, [0, 0], [-1, 1])
        num_classes = labels.get_shape().as_list()[1]
        background_col = tf.matmul(
            background_col, tf.ones([1, num_classes], dtype=labels.dtype))
        is_pos_label_row = background_col < 0.5

        alpha_tmp = alpha * tf.ones_like(logits, dtype=logits.dtype)
        alpha_array = tf.where(is_pos_label_row, alpha_tmp, 1.0 - alpha_tmp)
        gamma_array = gamma * tf.ones_like(logits, dtype=logits.dtype)

        pos_part = -labels * alpha_array * tf.pow(1.0 - sigmoid_x,
                                                  gamma_array) * log_sigmoid_x
        neg_part = -(1.0 - labels) * alpha_array * tf.pow(
            sigmoid_x, gamma_array) * -tf.log(1.0 + tf.exp(logits))
        ### tf.log(1.0 - sigmoid_x) = - tf.log(1.0 + tf.exp(logits))
        return tf.add(pos_part, neg_part, name=name)