コード例 #1
0
 def testSoftmaxAxes(self):
   arr = np.linspace(0., 1, 12).reshape(3, 4)
   x_neg_axis = nn_ops.softmax_v2(arr, axis=-2)
   y_pos_axis = nn_ops.softmax_v2(arr, axis=0)
   z_gt_axis = nn_ops.softmax_v2(arr, axis=0)
   x_neg_axis_tf = self.evaluate(x_neg_axis)
   y_pos_axis_tf = self.evaluate(y_pos_axis)
   z_gt_axis_tf = self.evaluate(z_gt_axis)
   eps = 1e-3
   self.assertAllClose(x_neg_axis_tf, y_pos_axis_tf, eps)
   self.assertAllClose(y_pos_axis_tf, z_gt_axis_tf, eps)
コード例 #2
0
ファイル: nn_test.py プロジェクト: Wajih-O/tensorflow
 def testSoftmaxAxes(self):
   arr = np.linspace(0., 1, 12).reshape(3, 4)
   x_neg_axis = nn_ops.softmax_v2(arr, axis=-2)
   y_pos_axis = nn_ops.softmax_v2(arr, axis=0)
   z_gt_axis = nn_ops.softmax_v2(arr, axis=0)
   x_neg_axis_tf = self.evaluate(x_neg_axis)
   y_pos_axis_tf = self.evaluate(y_pos_axis)
   z_gt_axis_tf = self.evaluate(z_gt_axis)
   eps = 1e-3
   self.assertAllClose(x_neg_axis_tf, y_pos_axis_tf, eps)
   self.assertAllClose(y_pos_axis_tf, z_gt_axis_tf, eps)
コード例 #3
0
ファイル: nn_test.py プロジェクト: Wajih-O/tensorflow
 def testSoftmax(self):
   x_shape = [5, 10]
   x_np = np.random.randn(*x_shape).astype(np.float32)
   y_np = self._softmax(x_np)
   x_tf = constant_op.constant(x_np)
   y_tf = nn_ops.softmax_v2(x_tf)
   y_tf_last_dim = nn_ops.softmax_v2(x_tf, 1)
   y_tf_np = self.evaluate(y_tf)
   y_tf_last_dim_np = self.evaluate(y_tf_last_dim)
   eps = 1e-3
   self.assertAllClose(y_tf_np, y_np, eps)
   self.assertAllClose(y_tf_last_dim_np, y_np, eps)
コード例 #4
0
 def testSoftmax(self):
   x_shape = [5, 10]
   x_np = np.random.randn(*x_shape).astype(np.float32)
   y_np = self._softmax(x_np)
   x_tf = constant_op.constant(x_np)
   y_tf = nn_ops.softmax_v2(x_tf)
   y_tf_last_dim = nn_ops.softmax_v2(x_tf, 1)
   y_tf_np = self.evaluate(y_tf)
   y_tf_last_dim_np = self.evaluate(y_tf_last_dim)
   eps = 1e-3
   self.assertAllClose(y_tf_np, y_np, eps)
   self.assertAllClose(y_tf_last_dim_np, y_np, eps)
コード例 #5
0
ファイル: nn_test.py プロジェクト: Wajih-O/tensorflow
 def testGradient(self, x_shape):
   x_np = np.random.randn(*x_shape).astype(np.float64)
   with self.cached_session():
     x_tf = constant_op.constant(x_np)
     y_tf = nn_ops.softmax_v2(x_tf)
     err = gradient_checker.compute_gradient_error(x_tf, x_shape, y_tf,
                                                   x_shape)
   eps = 2e-8
   self.assertLess(err, eps)
コード例 #6
0
 def testGradient(self, x_shape):
   x_np = np.random.randn(*x_shape).astype(np.float64)
   with self.cached_session():
     x_tf = constant_op.constant(x_np)
     y_tf = nn_ops.softmax_v2(x_tf)
     err = gradient_checker.compute_gradient_error(x_tf, x_shape, y_tf,
                                                   x_shape)
   eps = 2e-8
   self.assertLess(err, eps)
コード例 #7
0
 def testShortTensors(self):
   eps = 1e-5
   x_list = [[], [1]]
   x_row_matrices = [[row] for row in x_list]
   y_row_matrices = [
       self._softmax(np.array(row_matrix)).tolist()
       for row_matrix in x_row_matrices
   ]
   y_list = [row_matrix[0] for row_matrix in y_row_matrices]
   y_expected_from_numpy = ragged_factory_ops.constant(
       y_list, dtype=dtypes.float32)
   x_tf = ragged_factory_ops.constant(x_list, dtype=dtypes.float32)
   y_tf = nn_ops.softmax_v2(x_tf)
   self.assertAllClose(y_tf, y_expected_from_numpy, eps)
コード例 #8
0
 def testOrdinaryValues(self):
   eps = 1e-5
   x_list = [np.log([0.5, 0.25, 0.25]), np.log([0.5, 0.5])]
   x_row_matrices = [[row] for row in x_list]
   y_row_matrices = [
       self._softmax(np.array(row_matrix)).tolist()
       for row_matrix in x_row_matrices
   ]
   y_list = [row_matrix[0] for row_matrix in y_row_matrices]
   y_expected_from_numpy = ragged_factory_ops.constant(
       y_list, dtype=dtypes.float32)
   y_expected = ragged_factory_ops.constant([[0.5, 0.25, 0.25], [0.5, 0.5]],
                                            dtype=dtypes.float32)
   self.assertAllClose(y_expected_from_numpy, y_expected, eps)
   x_tf = ragged_factory_ops.constant(x_list, dtype=dtypes.float32)
   y_tf = nn_ops.softmax_v2(x_tf)
   self.assertAllClose(y_tf, y_expected_from_numpy, eps)