def poisson(lam=1.0, size=None): if size is None: size = () elif np_utils.isscalar(size): size = (size, ) return np_utils.tensor_to_ndarray( random_ops.random_poisson(shape=size, lam=lam, dtype=np_dtypes.int64))
def standard_normal(size=None): # TODO(wangpeng): Use new stateful RNG if size is None: size = () elif np_utils.isscalar(size): size = (size,) dtype = np_dtypes.default_float_type() return random_ops.random_normal(size, dtype=dtype)
def randn(*args): """Returns samples from a normal distribution. Uses `tf.random_normal`. Args: *args: The shape of the output array. Returns: An ndarray with shape `args` and dtype `float64`. """ # TODO(wangpeng): Use new stateful RNG if np_utils.isscalar(args): args = (args, ) dtype = np_dtypes.default_float_type() return random_ops.random_normal(args, dtype=dtype)
def randn(*args): """Returns samples from a normal distribution. Uses `tf.random_normal`. Args: *args: The shape of the output array. Returns: An ndarray with shape `args` and dtype `float64`. """ # TODO(wangpeng): Use new stateful RNG if np_utils.isscalar(args): args = (args, ) return np_utils.tensor_to_ndarray( random_ops.random_normal(args, dtype=DEFAULT_RANDN_DTYPE))
def full(shape, fill_value, dtype=None): # pylint: disable=redefined-outer-name """Returns an array with given shape and dtype filled with `fill_value`. Args: shape: A valid shape object. Could be a native python object or an object of type ndarray, numpy.ndarray or tf.TensorShape. fill_value: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. dtype: Optional, defaults to dtype of the `fill_value`. The type of the resulting ndarray. Could be a python type, a NumPy type or a TensorFlow `DType`. Returns: An ndarray. Raises: ValueError: if `fill_value` can not be broadcast to shape `shape`. """ fill_value = asarray(fill_value, dtype=dtype) if np_utils.isscalar(shape): shape = array_ops.reshape(shape, [1]) return np_arrays.tensor_to_ndarray( array_ops.broadcast_to(fill_value.data, shape))
def poisson(lam=1.0, size=None): if size is None: size = () elif np_utils.isscalar(size): size = (size,) return random_ops.random_poisson(shape=size, lam=lam, dtype=np_dtypes.int_)