コード例 #1
0
def ragged_one_hot(indices: ragged_tensor.Ragged,
                   depth,
                   on_value=None,
                   off_value=None,
                   axis=None,
                   dtype=None,
                   name=None):
  """Applies tf.one_hot along the values of a RaggedTensor."""
  # Get the adjusted axis value for the call to array_ops.one_hot.
  # Note: the only negative `axis` value supported by array_ops.one_hot is -1.
  if isinstance(axis, int) and axis >= 0:
    if axis <= indices.ragged_rank:
      raise ValueError('axis (%d) must be greater than indices.ragged_rank '
                       '(%d).' % (axis, indices.ragged_rank))
    axis -= indices.ragged_rank

  with ops.name_scope(name, 'RaggedOneHot',
                      [indices, depth, on_value, off_value, axis]):
    indices = ragged_tensor.convert_to_tensor_or_ragged_tensor(
        indices, name='indices')
    return indices.with_flat_values(
        array_ops.one_hot(indices.flat_values, depth, on_value, off_value, axis,
                          dtype, name))
コード例 #2
0
def expand_dims(input: ragged_tensor.Ragged, axis, name=None):  # pylint: disable=redefined-builtin
  """Inserts a dimension with shape 1 into a potentially ragged tensor's shape.

  Given a potentially ragged tenor `input`, this operation inserts a
  dimension with size 1 at the dimension `axis` of `input`'s shape.

  The following table gives some examples showing how `ragged.expand_dims`
  impacts the shapes of different input tensors.  Ragged dimensions are
  indicated by enclosing them in parentheses.

  input.shape             | axis | result.shape
  ----------------------- | ---- | -----------------------------
  `[D1, D2]`              |  `0` | `[1, D1, D2]`
  `[D1, D2]`              |  `1` | `[D1, 1, D2]`
  `[D1, D2]`              |  `2` | `[D1, D2, 1]`
  `[D1, (D2), (D3), D4]`  |  `0` | `[1, D1, (D2), (D3), D4]`
  `[D1, (D2), (D3), D4]`  |  `1` | `[D1, 1, (D2), (D3), D4]`
  `[D1, (D2), (D3), D4]`  |  `2` | `[D1, (D2), 1, (D3), D4]`
  `[D1, (D2), (D3), D4]`  |  `3` | `[D1, (D2), (D3), 1, D4]`
  `[D1, (D2), (D3), D4]`  |  `4` | `[D1, (D2), (D3), D4, 1]`

  Args:
    input: The potentially tensor that should be expanded with a new dimension.
    axis: An integer constant indicating where the new dimension should be
      inserted.
    name: A name for the operation (optional).

  Returns:
    A tensor with the same values as `input`, with an added dimension of
    size 1 at `axis`.

  #### Examples:

  >>> rt = tf.ragged.constant([[1, 2], [3]])
  >>> print(rt.shape)
  (2, None)

  >>> expanded = tf.expand_dims(rt, axis=0)
  >>> print(expanded.shape, expanded)
  (1, 2, None) <tf.RaggedTensor [[[1, 2], [3]]]>

  >>> expanded = tf.expand_dims(rt, axis=1)
  >>> print(expanded.shape, expanded)
  (2, 1, None) <tf.RaggedTensor [[[1, 2]], [[3]]]>

  >>> expanded = tf.expand_dims(rt, axis=2)
  >>> print(expanded.shape, expanded)
  (2, None, 1) <tf.RaggedTensor [[[1], [2]], [[3]]]>
  """
  with ops.name_scope(name, 'RaggedExpandDims', [input]):
    input = ragged_tensor.convert_to_tensor_or_ragged_tensor(
        input, name='input')

    if not ragged_tensor.is_ragged(input):
      return array_ops.expand_dims(input, axis)

    ndims = None if input.shape.ndims is None else input.shape.ndims + 1
    axis = array_ops.get_positive_axis(axis, ndims, ndims_name='rank(input)')

    if axis == 0:
      return ragged_tensor.RaggedTensor.from_uniform_row_length(
          input, uniform_row_length=input.nrows(), nrows=1, validate=False)
    elif axis == 1:
      return ragged_tensor.RaggedTensor.from_uniform_row_length(
          input, uniform_row_length=1, nrows=input.nrows(), validate=False)
    else:
      if ragged_tensor.is_ragged(input.values):
        return input.with_values(expand_dims(input.values, axis - 1))
      else:
        return input.with_values(array_ops.expand_dims(input.values, axis - 1))
コード例 #3
0
def squeeze(input: ragged_tensor.Ragged, axis=None, name=None):  # pylint: disable=redefined-builtin
    """Ragged compatible squeeze.

  If `input` is a `tf.Tensor`, then this calls `tf.squeeze`.

  If `input` is a `tf.RaggedTensor`, then this operation takes `O(N)` time,
  where `N` is the number of elements in the squeezed dimensions.

  Args:
    input: A potentially ragged tensor. The input to squeeze.
    axis: An optional list of ints. Defaults to `None`. If the `input` is
      ragged, it only squeezes the dimensions listed. It fails if `input` is
      ragged and axis is []. If `input` is not ragged it calls tf.squeeze. Note
      that it is an error to squeeze a dimension that is not 1. It must be in
      the range of [-rank(input), rank(input)).
   name: A name for the operation (optional).

  Returns:
    A potentially ragged tensor. Contains the same data as input,
    but has one or more dimensions of size 1 removed.
  """
    with ops.name_scope(name, 'RaggedSqueeze', [input]):
        input = ragged_tensor.convert_to_tensor_or_ragged_tensor(input)
        if isinstance(input, ops.Tensor):
            return array_ops.squeeze(input, axis, name)

        if axis is None:
            raise ValueError('Ragged.squeeze must have an axis argument.')
        if isinstance(axis, int):
            axis = [axis]
        elif ((not isinstance(axis, (list, tuple)))
              or (not all(isinstance(d, int) for d in axis))):
            raise TypeError('Axis must be a list or tuple of integers.')

        dense_dims = []
        ragged_dims = []
        # Normalize all the dims in axis to be positive
        axis = [
            array_ops.get_positive_axis(d, input.shape.ndims, 'axis[%d]' % i,
                                        'rank(input)')
            for i, d in enumerate(axis)
        ]
        for dim in axis:
            if dim > input.ragged_rank:
                dense_dims.append(dim - input.ragged_rank)
            else:
                ragged_dims.append(dim)

        # Make sure the specified ragged dimensions are squeezable.
        assertion_list = []
        scalar_tensor_one = constant_op.constant(1,
                                                 dtype=input.row_splits.dtype)
        for i, r in enumerate(input.nested_row_lengths()):
            if i + 1 in ragged_dims:
                assertion_list.append(
                    control_flow_ops.Assert(
                        math_ops.reduce_all(
                            math_ops.equal(r, scalar_tensor_one)),
                        [
                            'the given axis (axis = %d) is not squeezable!' %
                            (i + 1)
                        ]))
        if 0 in ragged_dims:
            scalar_tensor_two = constant_op.constant(2, dtype=dtypes.int32)
            assertion_list.append(
                control_flow_ops.Assert(
                    math_ops.equal(array_ops.size(input.row_splits),
                                   scalar_tensor_two),
                    ['the given axis (axis = 0) is not squeezable!']))

        # Till now, we are sure that the ragged dimensions are squeezable.
        squeezed_rt = None
        squeezed_rt = control_flow_ops.with_dependencies(
            assertion_list, input.flat_values)

        if dense_dims:
            # Gives error if the dense dimension is not squeezable.
            squeezed_rt = array_ops.squeeze(squeezed_rt, dense_dims)

        remaining_row_splits = []
        remaining_row_splits = list()
        for i, row_split in enumerate(input.nested_row_splits):
            # each row_splits tensor is for dimension #(i+1) .
            if (i + 1) not in ragged_dims:
                remaining_row_splits.append(row_split)
        # Take care of the first row if it is to be squeezed.
        if remaining_row_splits and 0 in ragged_dims:
            remaining_row_splits.pop(0)

        squeezed_rt = RaggedTensor.from_nested_row_splits(
            squeezed_rt, remaining_row_splits)

        # Corner case: when removing all the ragged dimensions and the output is
        # a scalar tensor e.g. ragged.squeeze(ragged.constant([[[1]]])).
        if set(range(0, input.ragged_rank + 1)).issubset(set(ragged_dims)):
            squeezed_rt = array_ops.squeeze(squeezed_rt, [0], name)

        return squeezed_rt