コード例 #1
0
 def loop_fn(i):
   rates_i = array_ops.gather(rates, i)
   # Test both scalar and non-scalar params and shapes.
   return (random_ops.random_poisson(lam=rates_i[0, 0], shape=[]),
           random_ops.random_poisson(lam=rates_i, shape=[]),
           random_ops.random_poisson(lam=rates_i[0, 0], shape=[3]),
           random_ops.random_poisson(lam=rates_i, shape=[3]))
コード例 #2
0
 def loop_fn(i):
   rates_i = array_ops.gather(rates, i)
   # Test both scalar and non-scalar params and shapes.
   return (random_ops.random_poisson(lam=rates_i[0, 0], shape=[]),
           random_ops.random_poisson(lam=rates_i, shape=[]),
           random_ops.random_poisson(lam=rates_i[0, 0], shape=[3]),
           random_ops.random_poisson(lam=rates_i, shape=[3]))
コード例 #3
0
 def testDTypeCombinationsV2(self):
   """Tests random_poisson_v2() for all supported dtype combinations."""
   with self.cached_session():
     for lam_dt in _SUPPORTED_DTYPES:
       for out_dt in _SUPPORTED_DTYPES:
         random_ops.random_poisson(
             constant_op.constant([1], dtype=lam_dt), [10],
             dtype=out_dt).eval()
コード例 #4
0
 def testDTypeCombinationsV2(self):
   """Tests random_poisson_v2() for all supported dtype combinations."""
   with self.cached_session():
     for lam_dt in _SUPPORTED_DTYPES:
       for out_dt in _SUPPORTED_DTYPES:
         random_ops.random_poisson(
             constant_op.constant([1], dtype=lam_dt), [10],
             dtype=out_dt).eval()
コード例 #5
0
  def testNoCSE(self):
    """CSE = constant subexpression eliminator.

    SetIsStateful() should prevent two identical random ops from getting
    merged.
    """
    for dtype in dtypes.float16, dtypes.float32, dtypes.float64:
      with self.cached_session():
        rnd1 = random_ops.random_poisson(2.0, [24], dtype=dtype)
        rnd2 = random_ops.random_poisson(2.0, [24], dtype=dtype)
        diff = rnd2 - rnd1
        # Since these are all positive integers, the norm will
        # be at least 1 if they are different.
        self.assertGreaterEqual(np.linalg.norm(diff.eval()), 1)
コード例 #6
0
  def testNoCSE(self):
    """CSE = constant subexpression eliminator.

    SetIsStateful() should prevent two identical random ops from getting
    merged.
    """
    for dtype in dtypes.float16, dtypes.float32, dtypes.float64:
      with self.cached_session(use_gpu=True):
        rnd1 = random_ops.random_poisson(2.0, [24], dtype=dtype)
        rnd2 = random_ops.random_poisson(2.0, [24], dtype=dtype)
        diff = rnd2 - rnd1
        # Since these are all positive integers, the norm will
        # be at least 1 if they are different.
        self.assertGreaterEqual(np.linalg.norm(diff.eval()), 1)
コード例 #7
0
ファイル: resample.py プロジェクト: AlbertXiebnu/tensorflow
def resample_at_rate(inputs, rates, scope=None, seed=None, back_prop=False):
  """Given `inputs` tensors, stochastically resamples each at a given rate.

  For example, if the inputs are `[[a1, a2], [b1, b2]]` and the rates
  tensor contains `[3, 1]`, then the return value may look like `[[a1,
  a2, a1, a1], [b1, b2, b1, b1]]`. However, many other outputs are
  possible, since this is stochastic -- averaged over many repeated
  calls, each set of inputs should appear in the output `rate` times
  the number of invocations.

  Args:
    inputs: A list of tensors, each of which has a shape of `[batch_size, ...]`
    rates: A tensor of shape `[batch_size]` contiaining the resampling rates
       for each input.
    scope: Scope for the op.
    seed: Random seed to use.
    back_prop: Whether to allow back-propagation through this op.

  Returns:
    Selections from the input tensors.
  """
  with ops.name_scope(scope, default_name='resample_at_rate',
                      values=list(inputs) + [rates]):
    rates = ops.convert_to_tensor(rates, name='rates')
    # random_poisson does not support rates of size 0 (b/36076216)
    sample_counts = math_ops.cast(control_flow_ops.cond(
        array_ops.shape(rates)[0] > 0,
        lambda: random_ops.random_poisson(rates, (), rates.dtype, seed=seed),
        lambda: array_ops.zeros(shape=[0], dtype=rates.dtype)), dtypes.int32)
    sample_indices = _repeat_range(sample_counts)
    if not back_prop:
      sample_indices = array_ops.stop_gradient(sample_indices)
    return [array_ops.gather(x, sample_indices) for x in inputs]
コード例 #8
0
def resample_at_rate(inputs, rates, scope=None, seed=None, back_prop=False):
    """Given `inputs` tensors, stochastically resamples each at a given rate.

  For example, if the inputs are `[[a1, a2], [b1, b2]]` and the rates
  tensor contains `[3, 1]`, then the return value may look like `[[a1,
  a2, a1, a1], [b1, b2, b1, b1]]`. However, many other outputs are
  possible, since this is stochastic -- averaged over many repeated
  calls, each set of inputs should appear in the output `rate` times
  the number of invocations.

  Args:
    inputs: A list of tensors, each of which has a shape of `[batch_size, ...]`
    rates: A tensor of shape `[batch_size]` contiaining the resampling rates
       for each input.
    scope: Scope for the op.
    seed: Random seed to use.
    back_prop: Whether to allow back-propagation through this op.

  Returns:
    Selections from the input tensors.
  """
    with ops.name_scope(scope,
                        default_name='resample_at_rate',
                        values=list(inputs) + [rates]):
        rates = ops.convert_to_tensor(rates, name='rates')
        sample_counts = math_ops.cast(
            random_ops.random_poisson(rates, (), rates.dtype, seed=seed),
            dtypes.int32)
        sample_indices = _repeat_range(sample_counts)
        if not back_prop:
            sample_indices = array_ops.stop_gradient(sample_indices)
        return [array_ops.gather(x, sample_indices) for x in inputs]
コード例 #9
0
 def _sample_n(self, n, seed=None):
   # Get ids as a [n, batch_size]-shaped matrix, unless batch_shape=[] then get
   # ids as a [n]-shaped vector.
   batch_size = (np.prod(self.batch_shape.as_list(), dtype=np.int32)
                 if self.batch_shape.is_fully_defined()
                 else math_ops.reduce_prod(self.batch_shape_tensor()))
   ids = self._mixture_distribution.sample(
       sample_shape=concat_vectors(
           [n],
           distribution_util.pick_vector(
               self.is_scalar_batch(),
               np.int32([]),
               [batch_size])),
       seed=distribution_util.gen_new_seed(
           seed, "poisson_lognormal_quadrature_compound"))
   # Stride `quadrature_size` for `batch_size` number of times.
   offset = math_ops.range(start=0,
                           limit=batch_size * self._quadrature_size,
                           delta=self._quadrature_size,
                           dtype=ids.dtype)
   ids += offset
   rate = array_ops.gather(
       array_ops.reshape(self.distribution.rate, shape=[-1]), ids)
   rate = array_ops.reshape(
       rate, shape=concat_vectors([n], self.batch_shape_tensor()))
   return random_ops.random_poisson(
       lam=rate, shape=[], dtype=self.dtype, seed=seed)
コード例 #10
0
 def testSizeTooLarge(self):
     with self.assertRaisesRegex((ValueError, errors.InvalidArgumentError),
                                 "overflow"):
         rate = constant_op.constant(1.0, shape=(4, 4, 4, 4, 4))
         self.evaluate(
             random_ops.random_poisson(shape=[46902, 51188, 34063, 59195],
                                       lam=rate))
コード例 #11
0
 def _sample_n(self, n, seed=None):
     # Get ids as a [n, batch_size]-shaped matrix, unless batch_shape=[] then get
     # ids as a [n]-shaped vector.
     batch_size = (np.prod(self.batch_shape.as_list(), dtype=np.int32)
                   if self.batch_shape.is_fully_defined() else
                   math_ops.reduce_prod(self.batch_shape_tensor()))
     ids = self._mixture_distribution.sample(
         sample_shape=concat_vectors([n],
                                     distribution_util.pick_vector(
                                         self.is_scalar_batch(),
                                         np.int32([]), [batch_size])),
         seed=distribution_util.gen_new_seed(
             seed, "poisson_lognormal_quadrature_compound"))
     # Stride `quadrature_size` for `batch_size` number of times.
     offset = math_ops.range(start=0,
                             limit=batch_size * self._quadrature_size,
                             delta=self._quadrature_size,
                             dtype=ids.dtype)
     ids += offset
     rate = array_ops.gather(
         array_ops.reshape(self.distribution.rate, shape=[-1]), ids)
     rate = array_ops.reshape(rate,
                              shape=concat_vectors(
                                  [n], self.batch_shape_tensor()))
     return random_ops.random_poisson(lam=rate,
                                      shape=[],
                                      dtype=self.dtype,
                                      seed=seed)
コード例 #12
0
ファイル: np_random.py プロジェクト: chrisvon62/AiBot
def poisson(lam=1.0, size=None):
    if size is None:
        size = ()
    elif np_utils.isscalar(size):
        size = (size, )
    return np_utils.tensor_to_ndarray(
        random_ops.random_poisson(shape=size, lam=lam, dtype=np_dtypes.int64))
コード例 #13
0
 def func():
   with self.session(use_gpu=use_gpu, graph=ops.Graph()) as sess:
     rng = random_ops.random_poisson(lam, [num], dtype=dtype, seed=seed)
     ret = np.empty([10, num])
     for i in xrange(10):
       ret[i, :] = self.evaluate(rng)
   return ret
コード例 #14
0
 def func():
   with self.session(use_gpu=use_gpu, graph=ops.Graph()) as sess:
     rng = random_ops.random_poisson(lam, [num], dtype=dtype, seed=seed)
     ret = np.empty([10, num])
     for i in xrange(10):
       ret[i, :] = sess.run(rng)
   return ret
コード例 #15
0
 def _sample_n(self, n, seed=None):
     # Here we use the fact that if:
     # lam ~ Gamma(concentration=total_count, rate=(1-probs)/probs)
     # then X ~ Poisson(lam) is Negative Binomially distributed.
     rate = random_ops.random_gamma(shape=[n],
                                    alpha=self.total_count,
                                    beta=math_ops.exp(-self.logits),
                                    dtype=self.dtype,
                                    seed=seed)
     return random_ops.random_poisson(rate,
                                      shape=[],
                                      dtype=self.dtype,
                                      seed=distribution_util.gen_new_seed(
                                          seed, "negative_binom"))
コード例 #16
0
 def _sample_n(self, n, seed=None):
   # Here we use the fact that if:
   # lam ~ Gamma(concentration=total_count, rate=(1-probs)/probs)
   # then X ~ Poisson(lam) is Negative Binomially distributed.
   rate = random_ops.random_gamma(
       shape=[n],
       alpha=self.total_count,
       beta=math_ops.exp(-self.logits),
       dtype=self.dtype,
       seed=seed)
   return random_ops.random_poisson(
       rate,
       shape=[],
       dtype=self.dtype,
       seed=distribution_util.gen_new_seed(seed, "negative_binom"))
コード例 #17
0
 def testShape(self):
   # Fully known shape
   rnd = random_ops.random_poisson(2.0, [150], seed=12345)
   self.assertEqual([150], rnd.get_shape().as_list())
   rnd = random_ops.random_poisson(
       lam=array_ops.ones([1, 2, 3]),
       shape=[150],
       seed=12345)
   self.assertEqual([150, 1, 2, 3], rnd.get_shape().as_list())
   rnd = random_ops.random_poisson(
       lam=array_ops.ones([1, 2, 3]),
       shape=[20, 30],
       seed=12345)
   self.assertEqual([20, 30, 1, 2, 3], rnd.get_shape().as_list())
   rnd = random_ops.random_poisson(
       lam=array_ops.placeholder(dtypes.float32, shape=(2,)),
       shape=[12],
       seed=12345)
   self.assertEqual([12, 2], rnd.get_shape().as_list())
   # Partially known shape.
   rnd = random_ops.random_poisson(
       lam=array_ops.ones([7, 3]),
       shape=array_ops.placeholder(dtypes.int32, shape=(1,)),
       seed=12345)
   self.assertEqual([None, 7, 3], rnd.get_shape().as_list())
   rnd = random_ops.random_poisson(
       lam=array_ops.ones([9, 6]),
       shape=array_ops.placeholder(dtypes.int32, shape=(3,)),
       seed=12345)
   self.assertEqual([None, None, None, 9, 6], rnd.get_shape().as_list())
   # Unknown shape.
   rnd = random_ops.random_poisson(
       lam=array_ops.placeholder(dtypes.float32),
       shape=array_ops.placeholder(dtypes.int32),
       seed=12345)
   self.assertIs(None, rnd.get_shape().ndims)
   rnd = random_ops.random_poisson(
       lam=array_ops.placeholder(dtypes.float32),
       shape=[50],
       seed=12345)
   self.assertIs(None, rnd.get_shape().ndims)
コード例 #18
0
 def testShape(self):
   # Fully known shape
   rnd = random_ops.random_poisson(2.0, [150], seed=12345)
   self.assertEqual([150], rnd.get_shape().as_list())
   rnd = random_ops.random_poisson(
       lam=array_ops.ones([1, 2, 3]),
       shape=[150],
       seed=12345)
   self.assertEqual([150, 1, 2, 3], rnd.get_shape().as_list())
   rnd = random_ops.random_poisson(
       lam=array_ops.ones([1, 2, 3]),
       shape=[20, 30],
       seed=12345)
   self.assertEqual([20, 30, 1, 2, 3], rnd.get_shape().as_list())
   rnd = random_ops.random_poisson(
       lam=array_ops.placeholder(dtypes.float32, shape=(2,)),
       shape=[12],
       seed=12345)
   self.assertEqual([12, 2], rnd.get_shape().as_list())
   # Partially known shape.
   rnd = random_ops.random_poisson(
       lam=array_ops.ones([7, 3]),
       shape=array_ops.placeholder(dtypes.int32, shape=(1,)),
       seed=12345)
   self.assertEqual([None, 7, 3], rnd.get_shape().as_list())
   rnd = random_ops.random_poisson(
       lam=array_ops.ones([9, 6]),
       shape=array_ops.placeholder(dtypes.int32, shape=(3,)),
       seed=12345)
   self.assertEqual([None, None, None, 9, 6], rnd.get_shape().as_list())
   # Unknown shape.
   rnd = random_ops.random_poisson(
       lam=array_ops.placeholder(dtypes.float32),
       shape=array_ops.placeholder(dtypes.int32),
       seed=12345)
   self.assertIs(None, rnd.get_shape().ndims)
   rnd = random_ops.random_poisson(
       lam=array_ops.placeholder(dtypes.float32),
       shape=[50],
       seed=12345)
   self.assertIs(None, rnd.get_shape().ndims)
コード例 #19
0
    def _sample_n(self, n, seed=None):
        # Get ids as a [n, batch_size]-shaped matrix, unless batch_shape=[] then get
        # ids as a [n]-shaped vector.
        batch_size = self.batch_shape.num_elements()
        if batch_size is None:
            batch_size = math_ops.reduce_prod(self.batch_shape_tensor())
        # We need to "sample extra" from the mixture distribution if it doesn't
        # already specify a probs vector for each batch coordinate.
        # We only support this kind of reduced broadcasting, i.e., there is exactly
        # one probs vector for all batch dims or one for each.
        ids = self._mixture_distribution.sample(
            sample_shape=concat_vectors(
                [n],
                distribution_util.pick_vector(
                    self.mixture_distribution.is_scalar_batch(), [batch_size],
                    np.int32([]))),
            seed=distribution_util.gen_new_seed(
                seed, "poisson_lognormal_quadrature_compound"))
        # We need to flatten batch dims in case mixture_distribution has its own
        # batch dims.
        ids = array_ops.reshape(ids,
                                shape=concat_vectors(
                                    [n],
                                    distribution_util.pick_vector(
                                        self.is_scalar_batch(), np.int32([]),
                                        np.int32([-1]))))

        # Stride `quadrature_size` for `batch_size` number of times.
        offset = math_ops.range(start=0,
                                limit=batch_size * self._quadrature_size,
                                delta=self._quadrature_size,
                                dtype=ids.dtype)
        ids += offset
        rate = array_ops.gather(
            array_ops.reshape(self.distribution.rate, shape=[-1]), ids)
        rate = array_ops.reshape(rate,
                                 shape=concat_vectors(
                                     [n], self.batch_shape_tensor()))
        return random_ops.random_poisson(lam=rate,
                                         shape=[],
                                         dtype=self.dtype,
                                         seed=seed)
コード例 #20
0
  def _sample_n(self, n, seed=None):
    # Get ids as a [n, batch_size]-shaped matrix, unless batch_shape=[] then get
    # ids as a [n]-shaped vector.
    batch_size = self.batch_shape.num_elements()
    if batch_size is None:
      batch_size = math_ops.reduce_prod(self.batch_shape_tensor())
    # We need to "sample extra" from the mixture distribution if it doesn't
    # already specify a probs vector for each batch coordinate.
    # We only support this kind of reduced broadcasting, i.e., there is exactly
    # one probs vector for all batch dims or one for each.
    ids = self._mixture_distribution.sample(
        sample_shape=concat_vectors(
            [n],
            distribution_util.pick_vector(
                self.mixture_distribution.is_scalar_batch(),
                [batch_size],
                np.int32([]))),
        seed=distribution_util.gen_new_seed(
            seed, "poisson_lognormal_quadrature_compound"))
    # We need to flatten batch dims in case mixture_distribution has its own
    # batch dims.
    ids = array_ops.reshape(ids, shape=concat_vectors(
        [n],
        distribution_util.pick_vector(
            self.is_scalar_batch(),
            np.int32([]),
            np.int32([-1]))))

    # Stride `quadrature_size` for `batch_size` number of times.
    offset = math_ops.range(start=0,
                            limit=batch_size * self._quadrature_size,
                            delta=self._quadrature_size,
                            dtype=ids.dtype)
    ids += offset
    rate = array_ops.gather(
        array_ops.reshape(self.distribution.rate, shape=[-1]), ids)
    rate = array_ops.reshape(
        rate, shape=concat_vectors([n], self.batch_shape_tensor()))
    return random_ops.random_poisson(
        lam=rate, shape=[], dtype=self.dtype, seed=seed)
コード例 #21
0
def MpcRandom_poisson(lam, shape, dtype=dtypes.float32, seed=None, name=None):
    dtype = dtype_check_and_set(dtype)
    #return random_ops.random_poisson(shape, mean, stddev, dtype, seed, name)
    return random_ops.random_poisson(lam, shape, dtype, seed, name)
コード例 #22
0
 def loop_fn(_):
   return random_ops.random_poisson(lam=[1.3], shape=[3])
コード例 #23
0
 def testZeroShape(self):
   with self.cached_session():
     rnd = random_ops.random_poisson([], [], seed=12345)
     self.assertEqual([0], rnd.get_shape().as_list())
     self.assertAllClose(np.array([], dtype=np.float32), rnd.eval())
コード例 #24
0
ファイル: np_random.py プロジェクト: zjwangmin/tensorflow
def poisson(lam=1.0, size=None):
  if size is None:
    size = ()
  elif np_utils.isscalar(size):
    size = (size,)
  return random_ops.random_poisson(shape=size, lam=lam, dtype=np_dtypes.int_)
コード例 #25
0
ファイル: poisson.py プロジェクト: FedericoFontana/ray
 def _sample_n(self, n, seed=None):
   return random_ops.random_poisson(
       self.rate, [n], dtype=self.dtype, seed=seed)
コード例 #26
0
 def loop_fn(_):
   return random_ops.random_poisson(lam=[1.3], shape=[3])
コード例 #27
0
 def testZeroShape(self):
   with self.cached_session():
     rnd = random_ops.random_poisson([], [], seed=12345)
     self.assertEqual([0], rnd.get_shape().as_list())
     self.assertAllClose(np.array([], dtype=np.float32), self.evaluate(rnd))
コード例 #28
0
 def testInfRate(self):
   sample = random_ops.random_poisson(shape=[2], lam=np.inf)
   self.assertAllEqual([np.inf, np.inf], self.evaluate(sample))