def testDeferredSlotRestoration(self): checkpoint_directory = self.get_temp_dir() root = checkpointable_utils.Checkpoint() root.var = checkpointable_utils.add_variable( root, name="var", initializer=0.) optimizer = adam.AdamOptimizer(0.1) if context.executing_eagerly(): optimizer.minimize(root.var.read_value) else: train_op = optimizer.minimize(root.var) # Note that `optimizer` has not been added as a dependency of # `root`. Create a one-off grouping so that slot variables for `root.var` # get initialized too. self.evaluate(checkpointable_utils.gather_initializers( checkpointable_utils.Checkpoint(root=root, optimizer=optimizer))) self.evaluate(train_op) self.evaluate(state_ops.assign(root.var, 12.)) no_slots_path = root.save(os.path.join(checkpoint_directory, "no_slots")) root.optimizer = optimizer self.evaluate(state_ops.assign(root.var, 13.)) self.evaluate(state_ops.assign(optimizer.get_slot(name="m", var=root.var), 14.)) slots_path = root.save(os.path.join(checkpoint_directory, "with_slots")) new_root = checkpointable_utils.Checkpoint() # Load the slot-containing checkpoint (deferred), then immediately overwrite # the non-slot variable (also deferred). slot_status = new_root.restore(slots_path) no_slot_status = new_root.restore(no_slots_path) with self.assertRaises(AssertionError): no_slot_status.assert_consumed() new_root.var = checkpointable_utils.add_variable( new_root, name="var", shape=[]) no_slot_status.assert_consumed() no_slot_status.run_restore_ops() self.assertEqual(12., self.evaluate(new_root.var)) new_root.optimizer = adam.AdamOptimizer(0.1) slot_status.assert_existing_objects_matched() with self.assertRaisesRegexp(AssertionError, "beta1_power"): slot_status.assert_consumed() self.assertEqual(12., self.evaluate(new_root.var)) if context.executing_eagerly(): # Slot variables are only created with restoring initializers when # executing eagerly. self.assertEqual(14., self.evaluate( new_root.optimizer.get_slot(name="m", var=new_root.var))) else: self.assertIs(new_root.optimizer.get_slot(name="m", var=new_root.var), None) if context.executing_eagerly(): new_root.optimizer.minimize(new_root.var.read_value) else: train_op = new_root.optimizer.minimize(new_root.var) # The slot variable now exists; restore() didn't create it, but we should # now have a restore op for it. slot_status.run_restore_ops() self.assertEqual(14., self.evaluate( new_root.optimizer.get_slot(name="m", var=new_root.var))) self.evaluate(train_op) slot_status.assert_consumed()
def testMultipleGraphsNonSlotVariables(self): with context.graph_mode(): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") optimizer = adam.AdamOptimizer(0.001) # Construct a model in one graph first_graph = ops.Graph() first_session = session_lib.Session(graph=first_graph) with first_graph.as_default(), first_session.as_default(): first_variable = resource_variable_ops.ResourceVariable([1.]) first_root_checkpointable = checkpointable_utils.Checkpoint( optimizer=optimizer, variable=first_variable) train_op = optimizer.minimize(first_variable.read_value) self.evaluate(checkpointable_utils.gather_initializers( first_root_checkpointable)) self.evaluate(train_op) self.evaluate(first_variable.assign([1.])) self.evaluate(optimizer.get_slot( var=first_variable, name="m").assign([2.])) beta1_power, _ = optimizer._get_beta_accumulators() self.evaluate(beta1_power.assign(3.)) # Save and load in a second graph second_graph = ops.Graph() with second_graph.as_default(), session_lib.Session(graph=second_graph): second_variable = resource_variable_ops.ResourceVariable([1.]) second_root_checkpointable = checkpointable_utils.Checkpoint( optimizer=optimizer, variable=second_variable) train_op = optimizer.minimize(second_variable.read_value) second_root_checkpointable.restore(None).initialize_or_restore() self.evaluate(train_op) self.evaluate(second_variable.assign([4.])) self.evaluate(optimizer.get_slot( var=second_variable, name="m").assign([5.])) beta1_power, _ = optimizer._get_beta_accumulators() self.evaluate(beta1_power.assign(6.)) save_path = second_root_checkpointable.save(checkpoint_prefix) self.evaluate(second_variable.assign([7.])) self.evaluate(optimizer.get_slot( var=second_variable, name="m").assign([8.])) beta1_power, _ = optimizer._get_beta_accumulators() self.assertAllEqual(6., self.evaluate(beta1_power)) status = second_root_checkpointable.restore(save_path) status.assert_consumed().run_restore_ops() self.assertAllEqual([4.], self.evaluate(second_variable)) self.assertAllEqual([5.], self.evaluate(optimizer.get_slot( var=second_variable, name="m"))) beta1_power, _ = optimizer._get_beta_accumulators() self.assertAllEqual(6., self.evaluate(beta1_power)) # Check that the first graph is unmolested with first_graph.as_default(), first_session.as_default(): self.assertAllEqual([1.], self.evaluate(first_variable)) self.assertAllEqual([2.], self.evaluate(optimizer.get_slot( var=first_variable, name="m"))) beta1_power, _ = optimizer._get_beta_accumulators() self.assertAllEqual(3., self.evaluate(beta1_power))
def testMultipleGraphsNonSlotVariables(self): with context.graph_mode(): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") optimizer = adam.AdamOptimizer(0.001) # Construct a model in one graph first_graph = ops.Graph() first_session = session_lib.Session(graph=first_graph) with first_graph.as_default(), first_session.as_default(): first_variable = resource_variable_ops.ResourceVariable([1.]) first_root_checkpointable = util.Checkpoint( optimizer=optimizer, variable=first_variable) train_op = optimizer.minimize(first_variable.read_value) self.evaluate(util.gather_initializers( first_root_checkpointable)) self.evaluate(train_op) self.evaluate(first_variable.assign([1.])) self.evaluate(optimizer.get_slot( var=first_variable, name="m").assign([2.])) beta_1_power, _ = optimizer._get_beta_accumulators() self.evaluate(beta_1_power.assign(3.)) # Save and load in a second graph second_graph = ops.Graph() with second_graph.as_default(), session_lib.Session(graph=second_graph): second_variable = resource_variable_ops.ResourceVariable([1.]) second_root_checkpointable = util.Checkpoint( optimizer=optimizer, variable=second_variable) train_op = optimizer.minimize(second_variable.read_value) second_root_checkpointable.restore(None).initialize_or_restore() self.evaluate(train_op) self.evaluate(second_variable.assign([4.])) self.evaluate(optimizer.get_slot( var=second_variable, name="m").assign([5.])) beta_1_power, _ = optimizer._get_beta_accumulators() self.evaluate(beta_1_power.assign(6.)) save_path = second_root_checkpointable.save(checkpoint_prefix) self.evaluate(second_variable.assign([7.])) self.evaluate(optimizer.get_slot( var=second_variable, name="m").assign([8.])) beta_1_power, _ = optimizer._get_beta_accumulators() self.assertAllEqual(6., self.evaluate(beta_1_power)) status = second_root_checkpointable.restore(save_path) status.assert_consumed().run_restore_ops() self.assertAllEqual([4.], self.evaluate(second_variable)) self.assertAllEqual([5.], self.evaluate(optimizer.get_slot( var=second_variable, name="m"))) beta_1_power, _ = optimizer._get_beta_accumulators() self.assertAllEqual(6., self.evaluate(beta_1_power)) # Check that the first graph is unmolested with first_graph.as_default(), first_session.as_default(): self.assertAllEqual([1.], self.evaluate(first_variable)) self.assertAllEqual([2.], self.evaluate(optimizer.get_slot( var=first_variable, name="m"))) beta_1_power, _ = optimizer._get_beta_accumulators() self.assertAllEqual(3., self.evaluate(beta_1_power))
def testManySavesGraph(self): """Saves after the first should not modify the graph.""" with context.graph_mode(): graph = ops.Graph() with graph.as_default(), self.session(graph): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") obj = checkpointable_utils.Checkpoint() obj.var = variable_scope.get_variable(name="v", initializer=0.) obj.opt = adam.AdamOptimizer(0.1) obj.opt.minimize(obj.var.read_value()) self.evaluate(checkpointable_utils.gather_initializers(obj)) obj.save(checkpoint_prefix) before_ops = graph.get_operations() obj.save(checkpoint_prefix) self.assertEqual(before_ops, graph.get_operations())
def _initialized_model(self): input_value = constant_op.constant([[3.]]) model = MyModel() optimizer = adam.AdamOptimizer(0.001) optimizer_step = training_util.get_or_create_global_step() root_checkpointable = checkpointable_utils.Checkpoint( optimizer=optimizer, model=model, optimizer_step=optimizer_step) train_op = optimizer.minimize( functools.partial(model, input_value), global_step=optimizer_step) self.evaluate(checkpointable_utils.gather_initializers( root_checkpointable)) self.evaluate(train_op) # A regular variable, a slot variable, and a non-slot Optimizer variable # with known values to check when loading. self.evaluate(model._named_dense.bias.assign([1.])) self.evaluate(optimizer.get_slot( var=model._named_dense.bias, name="m").assign([2.])) beta1_power, _ = optimizer._get_beta_accumulators() self.evaluate(beta1_power.assign(3.)) return root_checkpointable
def _initialized_model(self): input_value = constant_op.constant([[3.]]) model = MyModel() optimizer = adam.AdamOptimizer(0.001) optimizer_step = training_util.get_or_create_global_step() root_checkpointable = checkpointable_utils.Checkpoint( optimizer=optimizer, model=model, optimizer_step=optimizer_step) train_op = optimizer.minimize(functools.partial(model, input_value), global_step=optimizer_step) self.evaluate( checkpointable_utils.gather_initializers(root_checkpointable)) self.evaluate(train_op) # A regular variable, a slot variable, and a non-slot Optimizer variable # with known values to check when loading. self.evaluate(model._named_dense.bias.assign([1.])) self.evaluate( optimizer.get_slot(var=model._named_dense.bias, name="m").assign([2.])) beta1_power, _ = optimizer._get_beta_accumulators() self.evaluate(beta1_power.assign(3.)) return root_checkpointable
def testNamingWithOptimizer(self): input_value = constant_op.constant([[3.]]) model = MyModel() # A nuisance Model using the same optimizer. Its slot variables should not # go in the checkpoint, since it is never depended on. other_model = MyModel() optimizer = adam.AdamOptimizer(0.001) optimizer_step = training_util.get_or_create_global_step() root_checkpointable = checkpointable_utils.Checkpoint( optimizer=optimizer, model=model, optimizer_step=optimizer_step) if context.executing_eagerly(): optimizer.minimize( lambda: model(input_value), global_step=optimizer_step) optimizer.minimize( lambda: other_model(input_value), global_step=optimizer_step) else: train_op = optimizer.minimize( model(input_value), global_step=optimizer_step) optimizer.minimize( other_model(input_value), global_step=optimizer_step) self.evaluate(checkpointable_utils.gather_initializers( root_checkpointable)) self.evaluate(train_op) named_variables, serialized_graph, _ = ( checkpointable_utils._serialize_object_graph( root_checkpointable, saveables_cache=None)) expected_checkpoint_names = ( # Created in the root node, so no prefix. "optimizer_step", "model/_second/kernel", "model/_named_dense/kernel", "model/_named_dense/bias", # non-Layer dependency of the model "model/_non_layer/a_variable", # The optimizer creates two non-slot variables "optimizer/beta1_power", "optimizer/beta2_power", # Slot variables "model/_second/kernel/.OPTIMIZER_SLOT/optimizer/m", "model/_second/kernel/.OPTIMIZER_SLOT/optimizer/v", "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m", "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/v", "model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/m", "model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/v", ) suffix = "/.ATTRIBUTES/VARIABLE_VALUE" expected_checkpoint_names = [ name + suffix for name in expected_checkpoint_names] # The Dense layers also save get_config() JSON expected_checkpoint_names.extend( ["model/_second/.ATTRIBUTES/OBJECT_CONFIG_JSON", "model/_named_dense/.ATTRIBUTES/OBJECT_CONFIG_JSON"]) named_variables = {v.name: v for v in named_variables} six.assertCountEqual(self, expected_checkpoint_names, named_variables.keys()) # Check that we've mapped to the right variable objects (not exhaustive) self.assertEqual( "global_step", named_variables["optimizer_step" + suffix].full_name) self.assertEqual( "my_model/dense_1/kernel", named_variables["model/_second/kernel" + suffix].full_name) self.assertEqual( "my_model/dense/kernel", named_variables["model/_named_dense/kernel" + suffix].full_name) self.assertEqual( "beta1_power", named_variables["optimizer/beta1_power" + suffix].full_name) self.assertEqual( "beta2_power", named_variables["optimizer/beta2_power" + suffix].full_name) # Spot check the generated protocol buffers. self.assertEqual("optimizer", serialized_graph.nodes[0].children[1].local_name) optimizer_node = serialized_graph.nodes[serialized_graph.nodes[0].children[ 1].node_id] self.assertEqual("beta1_power", optimizer_node.children[0].local_name) self.assertEqual("beta1_power", serialized_graph.nodes[optimizer_node.children[0].node_id] .attributes[0].full_name) self.assertEqual( "my_model/dense/kernel", serialized_graph.nodes[optimizer_node.slot_variables[0] .original_variable_node_id] .attributes[0].full_name) # We strip off the :0 suffix, as variable.name-based saving does. self.assertEqual( "my_model/dense/kernel/Adam", serialized_graph.nodes[optimizer_node.slot_variables[0] .slot_variable_node_id] .attributes[0].full_name) self.assertEqual( "my_model/dense/kernel/Adam:0", optimizer.get_slot( var=model._named_dense.kernel, name="m").name) self.assertEqual( "model/_named_dense/kernel" + suffix, serialized_graph.nodes[ optimizer_node.slot_variables[0] .original_variable_node_id].attributes[0].checkpoint_key) self.assertEqual("m", optimizer_node.slot_variables[0].slot_name) self.assertEqual( "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m" + suffix, serialized_graph.nodes[ optimizer_node.slot_variables[0] .slot_variable_node_id].attributes[0].checkpoint_key)
def testSaveRestore(self): model = MyModel() optimizer = adam.AdamOptimizer(0.001) root_checkpointable = checkpointable_utils.Checkpoint( optimizer=optimizer, model=model) input_value = constant_op.constant([[3.]]) if context.executing_eagerly(): optimizer.minimize( lambda: model(input_value)) else: train_op = optimizer.minimize(model(input_value)) # TODO(allenl): Make initialization more pleasant when graph building. root_checkpointable.save_counter # pylint: disable=pointless-statement self.evaluate(checkpointable_utils.gather_initializers( root_checkpointable)) self.evaluate(train_op) prefix = os.path.join(self.get_temp_dir(), "ckpt") self.evaluate(state_ops.assign(model._named_dense.variables[1], [42.])) m_bias_slot = optimizer.get_slot(model._named_dense.variables[1], "m") self.evaluate(state_ops.assign(m_bias_slot, [1.5])) save_path = root_checkpointable.save(file_prefix=prefix) self.evaluate(state_ops.assign(model._named_dense.variables[1], [43.])) self.evaluate(state_ops.assign(root_checkpointable.save_counter, 3)) optimizer_variables = self.evaluate(optimizer.variables()) self.evaluate(state_ops.assign(m_bias_slot, [-2.])) # Immediate restoration status = root_checkpointable.restore(save_path=save_path).assert_consumed() status.run_restore_ops() self.assertAllEqual([42.], self.evaluate(model._named_dense.variables[1])) self.assertAllEqual(1, self.evaluate(root_checkpointable.save_counter)) self.assertAllEqual([1.5], self.evaluate(m_bias_slot)) if not context.executing_eagerly(): return # Restore-on-create is only supported when executing eagerly on_create_model = MyModel() on_create_optimizer = adam.AdamOptimizer( 0.001, # Preserve beta1_power and beta2_power when appying gradients so we can # test that they've been restored correctly. beta1=1.0, beta2=1.0) on_create_root = checkpointable_utils.Checkpoint( optimizer=on_create_optimizer, model=on_create_model) # Deferred restoration status = on_create_root.restore(save_path=save_path) status.assert_nontrivial_match() status.assert_existing_objects_matched() with self.assertRaises(AssertionError): status.assert_consumed() on_create_model(constant_op.constant([[3.]])) # create variables self.assertAllEqual(1, self.evaluate(on_create_root.save_counter)) self.assertAllEqual([42.], self.evaluate( on_create_model._named_dense.variables[1])) on_create_m_bias_slot = on_create_optimizer.get_slot( on_create_model._named_dense.variables[1], "m") status.assert_existing_objects_matched() with self.assertRaises(AssertionError): status.assert_consumed() # Optimizer slot variables are created when the original variable is # restored. self.assertAllEqual([1.5], self.evaluate(on_create_m_bias_slot)) self.assertAllEqual(optimizer_variables[2:], self.evaluate(on_create_optimizer.variables())) dummy_var = resource_variable_ops.ResourceVariable([1.]) on_create_optimizer.minimize(loss=dummy_var.read_value) status.assert_existing_objects_matched() status.assert_consumed() beta1_power, beta2_power = on_create_optimizer._get_beta_accumulators() self.assertAllEqual(optimizer_variables[0], self.evaluate(beta1_power)) self.assertAllEqual(optimizer_variables[1], self.evaluate(beta2_power))
def testSaveRestore(self): model = MyModel() optimizer = adam.AdamOptimizer(0.001) root_checkpointable = checkpointable_utils.Checkpoint( optimizer=optimizer, model=model) input_value = constant_op.constant([[3.]]) if context.executing_eagerly(): optimizer.minimize(lambda: model(input_value)) else: train_op = optimizer.minimize(model(input_value)) # TODO(allenl): Make initialization more pleasant when graph building. root_checkpointable.save_counter # pylint: disable=pointless-statement self.evaluate( checkpointable_utils.gather_initializers(root_checkpointable)) self.evaluate(train_op) prefix = os.path.join(self.get_temp_dir(), "ckpt") self.evaluate(state_ops.assign(model._named_dense.variables[1], [42.])) m_bias_slot = optimizer.get_slot(model._named_dense.variables[1], "m") self.evaluate(state_ops.assign(m_bias_slot, [1.5])) save_path = root_checkpointable.save(file_prefix=prefix) self.evaluate(state_ops.assign(model._named_dense.variables[1], [43.])) self.evaluate(state_ops.assign(root_checkpointable.save_counter, 3)) optimizer_variables = self.evaluate(optimizer.variables()) self.evaluate(state_ops.assign(m_bias_slot, [-2.])) # Immediate restoration status = root_checkpointable.restore( save_path=save_path).assert_consumed() status.run_restore_ops() self.assertAllEqual([42.], self.evaluate(model._named_dense.variables[1])) self.assertAllEqual(1, self.evaluate(root_checkpointable.save_counter)) self.assertAllEqual([1.5], self.evaluate(m_bias_slot)) if not context.executing_eagerly(): return # Restore-on-create is only supported when executing eagerly on_create_model = MyModel() on_create_optimizer = adam.AdamOptimizer( 0.001, # Preserve beta1_power and beta2_power when appying gradients so we can # test that they've been restored correctly. beta1=1.0, beta2=1.0) on_create_root = checkpointable_utils.Checkpoint( optimizer=on_create_optimizer, model=on_create_model) # Deferred restoration status = on_create_root.restore(save_path=save_path) on_create_model(constant_op.constant([[3.]])) # create variables self.assertAllEqual(1, self.evaluate(on_create_root.save_counter)) self.assertAllEqual([42.], self.evaluate( on_create_model._named_dense.variables[1])) on_create_m_bias_slot = on_create_optimizer.get_slot( on_create_model._named_dense.variables[1], "m") # Optimizer slot variables are created when the original variable is # restored. self.assertAllEqual([1.5], self.evaluate(on_create_m_bias_slot)) self.assertAllEqual(optimizer_variables[2:], self.evaluate(on_create_optimizer.variables())) dummy_var = resource_variable_ops.ResourceVariable([1.]) on_create_optimizer.minimize(loss=dummy_var.read_value) status.assert_consumed() beta1_power, beta2_power = on_create_optimizer._get_beta_accumulators() self.assertAllEqual(optimizer_variables[0], self.evaluate(beta1_power)) self.assertAllEqual(optimizer_variables[1], self.evaluate(beta2_power))
def testNamingWithOptimizer(self): input_value = constant_op.constant([[3.]]) model = MyModel() # A nuisance Model using the same optimizer. Its slot variables should not # go in the checkpoint, since it is never depended on. other_model = MyModel() optimizer = adam.AdamOptimizer(0.001) optimizer_step = training_util.get_or_create_global_step() root_checkpointable = checkpointable_utils.Checkpoint( optimizer=optimizer, model=model, optimizer_step=optimizer_step) if context.executing_eagerly(): optimizer.minimize(lambda: model(input_value), global_step=optimizer_step) optimizer.minimize(lambda: other_model(input_value), global_step=optimizer_step) else: train_op = optimizer.minimize(model(input_value), global_step=optimizer_step) optimizer.minimize(other_model(input_value), global_step=optimizer_step) self.evaluate( checkpointable_utils.gather_initializers(root_checkpointable)) self.evaluate(train_op) named_variables, serialized_graph, _ = ( checkpointable_utils._serialize_object_graph(root_checkpointable, saveables_cache=None)) expected_checkpoint_names = ( # Created in the root node, so no prefix. "optimizer_step", "model/_second/kernel", "model/_named_dense/kernel", "model/_named_dense/bias", # non-Layer dependency of the model "model/_non_layer/a_variable", # The optimizer creates two non-slot variables "optimizer/beta1_power", "optimizer/beta2_power", # Slot variables "model/_second/kernel/.OPTIMIZER_SLOT/optimizer/m", "model/_second/kernel/.OPTIMIZER_SLOT/optimizer/v", "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m", "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/v", "model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/m", "model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/v", ) suffix = "/.ATTRIBUTES/VARIABLE_VALUE" expected_checkpoint_names = [ name + suffix for name in expected_checkpoint_names ] # The Dense layers also save get_config() JSON expected_checkpoint_names.extend([ "model/_second/.ATTRIBUTES/OBJECT_CONFIG_JSON", "model/_named_dense/.ATTRIBUTES/OBJECT_CONFIG_JSON" ]) named_variables = {v.name: v for v in named_variables} six.assertCountEqual(self, expected_checkpoint_names, named_variables.keys()) # Check that we've mapped to the right variable objects (not exhaustive) self.assertEqual("global_step", named_variables["optimizer_step" + suffix].full_name) self.assertEqual( "my_model/dense_1/kernel", named_variables["model/_second/kernel" + suffix].full_name) self.assertEqual( "my_model/dense/kernel", named_variables["model/_named_dense/kernel" + suffix].full_name) self.assertEqual( "beta1_power", named_variables["optimizer/beta1_power" + suffix].full_name) self.assertEqual( "beta2_power", named_variables["optimizer/beta2_power" + suffix].full_name) # Spot check the generated protocol buffers. self.assertEqual("optimizer", serialized_graph.nodes[0].children[1].local_name) optimizer_node = serialized_graph.nodes[ serialized_graph.nodes[0].children[1].node_id] self.assertEqual("beta1_power", optimizer_node.children[0].local_name) self.assertEqual( "beta1_power", serialized_graph.nodes[ optimizer_node.children[0].node_id].attributes[0].full_name) self.assertEqual( "my_model/dense/kernel", serialized_graph.nodes[optimizer_node.slot_variables[ 0].original_variable_node_id].attributes[0].full_name) # We strip off the :0 suffix, as variable.name-based saving does. self.assertEqual( "my_model/dense/kernel/Adam", serialized_graph.nodes[optimizer_node.slot_variables[ 0].slot_variable_node_id].attributes[0].full_name) self.assertEqual( "my_model/dense/kernel/Adam:0", optimizer.get_slot(var=model._named_dense.kernel, name="m").name) self.assertEqual( "model/_named_dense/kernel" + suffix, serialized_graph.nodes[optimizer_node.slot_variables[ 0].original_variable_node_id].attributes[0].checkpoint_key) self.assertEqual("m", optimizer_node.slot_variables[0].slot_name) self.assertEqual( "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m" + suffix, serialized_graph.nodes[optimizer_node.slot_variables[ 0].slot_variable_node_id].attributes[0].checkpoint_key)