コード例 #1
0
def get_learning_rate(lr_config, global_step):
    """
    Instantiate a learning rate operation given a configuration with learning rate, name, and parameters.
    :param lr_config:  learning rate configuration
    :param global_step: global step `Tensor`
    :return: learning rate operation
    """
    lr = lr_config.rate
    name = lr_config.name
    if "exponential_decay" == name:
        decay = exponential_decay(lr, global_step, **lr_config.params)
    elif "inverse_time_decay" == name:
        decay = inverse_time_decay(lr, global_step, **lr_config.params)
    elif "vaswani" == name:
        decay = _transformer_learning_rate(lr_config, global_step)
    elif "bert" == name:
        decay = _bert_learning_rate(lr_config, global_step)
    elif "clr" == name:
        decay = cyclic_learning_rate(global_step,
                                     learning_rate=lr_config.rate,
                                     max_lr=lr_config.params.get(
                                         'max_lr', 0.1),
                                     step_size=lr_config.steps_per_epoch *
                                     lr_config.params.get('step_size', 4))
    else:
        raise ValueError("Unknown learning rate schedule: {}".format(name))
    return decay
コード例 #2
0
  def testStaircase(self):
    initial_lr = 0.1
    k = 10
    decay_rate = 0.96
    step = resource_variable_ops.ResourceVariable(0)
    decayed_lr = learning_rate_decay.inverse_time_decay(
        initial_lr, step, k, decay_rate, staircase=True)

    self.evaluate(variables.global_variables_initializer())
    for i in range(k + 1):
      expected = initial_lr / (1 + decay_rate * (i // k))
      self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6)
      self.evaluate(step.assign_add(1))
コード例 #3
0
    def testDecay(self):
        initial_lr = 0.1
        k = 10
        decay_rate = 0.96
        step = resource_variable_ops.ResourceVariable(0)
        decayed_lr = learning_rate_decay.inverse_time_decay(
            initial_lr, step, k, decay_rate)

        self.evaluate(variables.global_variables_initializer())
        for i in range(k + 1):
            expected = initial_lr / (1 + i / k * decay_rate)
            self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6)
            self.evaluate(step.assign_add(1))
コード例 #4
0
 def testDecay(self):
     initial_lr = 0.1
     k = 10
     decay_rate = 0.96
     step = state_ops.variable_op([], dtypes.int32)
     assign_step = state_ops.assign(step, 0)
     increment_step = state_ops.assign_add(step, 1)
     decayed_lr = learning_rate_decay.inverse_time_decay(
         initial_lr, step, k, decay_rate)
     with self.test_session():
         assign_step.op.run()
         for i in range(k + 1):
             expected = initial_lr / (1 + i / k * decay_rate)
             self.assertAllClose(decayed_lr.eval(), expected, 1e-6)
             increment_step.op.run()
コード例 #5
0
 def testDecay(self):
   initial_lr = 0.1
   k = 10
   decay_rate = 0.96
   step = state_ops.variable_op([], dtypes.int32)
   assign_step = state_ops.assign(step, 0)
   increment_step = state_ops.assign_add(step, 1)
   decayed_lr = learning_rate_decay.inverse_time_decay(initial_lr,
                                                       step,
                                                       k,
                                                       decay_rate)
   with self.test_session():
     assign_step.op.run()
     for i in range(k+1):
       expected = initial_lr / (1 + i / k * decay_rate)
       self.assertAllClose(decayed_lr.eval(), expected, 1e-6)
       increment_step.op.run()
コード例 #6
0
 def testStaircase(self):
   initial_lr = 0.1
   k = 10
   decay_rate = 0.96
   step = gen_state_ops._variable(shape=[], dtype=dtypes.int32,
       name="step", container="", shared_name="")
   assign_step = state_ops.assign(step, 0)
   increment_step = state_ops.assign_add(step, 1)
   decayed_lr = learning_rate_decay.inverse_time_decay(initial_lr,
                                                       step,
                                                       k,
                                                       decay_rate,
                                                       staircase=True)
   with self.test_session():
     assign_step.op.run()
     for i in range(k+1):
       expected = initial_lr / (1 + decay_rate * (i // k))
       self.assertAllClose(decayed_lr.eval(), expected, 1e-6)
       increment_step.op.run()
コード例 #7
0
 def testStaircase(self):
   initial_lr = 0.1
   k = 10
   decay_rate = 0.96
   step = gen_state_ops._variable(shape=[], dtype=dtypes.int32,
       name="step", container="", shared_name="")
   assign_step = state_ops.assign(step, 0)
   increment_step = state_ops.assign_add(step, 1)
   decayed_lr = learning_rate_decay.inverse_time_decay(initial_lr,
                                                       step,
                                                       k,
                                                       decay_rate,
                                                       staircase=True)
   with self.test_session():
     assign_step.op.run()
     for i in range(k+1):
       expected = initial_lr / (1 + decay_rate * (i // k))
       self.assertAllClose(decayed_lr.eval(), expected, 1e-6)
       increment_step.op.run()
コード例 #8
0
ファイル: optimization.py プロジェクト: fvisin/main_loop_tf
def apply_lr_decay(cfg, global_step):
    # Learning rate schedule
    if cfg.lr_decay is None:
        lr = cfg.lr
    elif cfg.lr_decay == 'exp':
        lr = exponential_decay(cfg.lr,
                               global_step,
                               cfg.decay_steps,
                               cfg.decay_rate,
                               staircase=cfg.staircase)
    elif cfg.lr_decay == 'piecewise':
        lr = piecewise_constant(global_step, cfg.lr_boundaries, cfg.lr_values)
    elif cfg.lr_decay == 'polynomial':
        lr = polynomial_decay(cfg.lr,
                              global_step,
                              cfg.decay_steps,
                              end_learning_rate=cfg.end_lr,
                              power=cfg.power,
                              cycle=cfg.staircase)

    elif cfg.lr_decay == 'natural_exp':
        lr = natural_exp_decay(cfg.lr,
                               global_step,
                               cfg.decay_steps,
                               cfg.decay_rate,
                               staircase=cfg.staircase)
    elif cfg.lr_decay == 'inverse_time':
        lr = inverse_time_decay(cfg.lr,
                                global_step,
                                cfg.decay_steps,
                                cfg.decay_rate,
                                staircase=cfg.staircase)

    elif cfg.lr_decay == 'STN':
        epoch = tf.cast(global_step / cfg.decay_steps, tf.int32)
        lr = cfg.lr * tf.pow(0.5, tf.cast(epoch / 50, cfg._FLOATX))
    else:
        raise NotImplementedError()
    return lr