コード例 #1
0
  def from_function_and_signature(cls, python_function,
                                  input_signature,
                                  is_pure=False,
                                  experimental_follow_type_hints=False,
                                  jit_compile=None):
    """Creates a FunctionSpec instance given a python function and signature.

    Args:
      python_function: a function to inspect
      input_signature: a signature of the function (None, if variable)
      is_pure: if True all input arguments (including variables and constants)
      will be converted to tensors and no variable changes allowed.
      experimental_follow_type_hints: see `tf.function`
      jit_compile: see `tf.function`

    Returns:
      instance of FunctionSpec
    """
    fullargspec = tf_inspect.getfullargspec(python_function)
    if (input_signature is not None and
        set(fullargspec.kwonlyargs) - set(fullargspec.kwonlydefaults or ())):
      nodefault_kwonlyargs = set(fullargspec.kwonlyargs)
      if fullargspec.kwonlydefaults is not None:
        nodefault_kwonlyargs -= set(fullargspec.kwonlydefaults)
      raise ValueError("Cannot build TF function from "
                       f"{python_function.__name__}: keyword-only arguments "
                       "must have default values when input_signature is "
                       "provided. Got keyword-only arguments without default "
                       f"values: {sorted(nodefault_kwonlyargs)}.")

    # Checks if the `fullargspec` contains self or cls as its first argument.
    is_method = tf_inspect.isanytargetmethod(python_function)

    # Treat a wrapped partial function as a special case. For all arguments that
    # were overridden with keywords in the partial:
    #   - remove the corresponding arguments,
    #   - remove the corresponding keywords.
    _, unwrapped = tf_decorator.unwrap(python_function)
    if isinstance(unwrapped, functools.partial):
      # Also consider the Python3 case with kwonlydefaults.
      if fullargspec.defaults or fullargspec.kwonlydefaults:
        new_defaults = fullargspec.defaults
        new_args = fullargspec.args
        if fullargspec.defaults:
          # To be able to canonicalize the function properly, we want to ignore
          # default values that are overridden via a partial kwarg. For example:
          #
          #   def func(a, b, c, d=5, e=7):
          #     return a, b, c, d, e
          #   p_func = tf.function(functools.partial(func, 10, e=9))
          #
          # Here we want to drop from the defaults the parameter `e`. If we
          # forwarded the call to the partial function with a default for `e`
          # we would get an error for passing two values for one parameter.
          #
          # Note that this has a limitation: we can only override parameters at
          # the end of the parameter list.
          #
          # In this case we want to end up with 3 arguments (b, c, d) and 1
          # default value (5). We do this by constructing a mask where 0 stands
          # for a value that was overridden by a partial kwarg. The seemingly
          # complicated logic below does just that - for arguments (b, c, d, e)
          # we would get a mask (1, 1, 1, 0).
          old_args = fullargspec.args
          old_defaults = fullargspec.defaults

          no_default = object()
          num_args_without_defaults = len(old_args) - len(old_defaults)
          left_padding = tuple([no_default] * num_args_without_defaults)

          args_with_defaults = zip(old_args, left_padding + old_defaults)

          # Create a mask where 0 stands for args that had a partial kwarg
          # defined.
          non_keyword_defaults_mask = [
              0 if key in unwrapped.keywords else 1 for key in old_args
          ]
          # Keep only arguments and defaults that were not kwargs of partial.
          new_args_with_defaults = list(
              itertools.compress(args_with_defaults, non_keyword_defaults_mask))
          # Keep all args.
          new_args = [arg for arg, _ in new_args_with_defaults]
          # Keep only real default values.
          new_defaults = [
              default for _, default in new_args_with_defaults
              if default is not no_default
          ]
        fullargspec = tf_inspect.FullArgSpec(
            args=new_args,
            varargs=fullargspec.varargs,
            varkw=fullargspec.varkw,
            defaults=new_defaults,
            kwonlyargs=[],
            kwonlydefaults={},
            annotations=fullargspec.annotations)

    # Get the function's name.  Remove functools.partial wrappers if necessary.
    while isinstance(python_function, functools.partial):
      python_function = python_function.func
    name = getattr(python_function, "__name__", "f")

    return FunctionSpec(
        fullargspec,
        is_method,
        input_signature,
        is_pure=is_pure,
        jit_compile=jit_compile,
        experimental_follow_type_hints=experimental_follow_type_hints,
        name=name)
コード例 #2
0
    def testIsAnyTargetMethod(self):
        class MyModule:
            def f(self, a):
                pass

            def __call__(self):
                pass

        module = MyModule()
        self.assertTrue(tf_inspect.isanytargetmethod(module))
        f = module.f
        self.assertTrue(tf_inspect.isanytargetmethod(f))
        f = functools.partial(f, 1)
        self.assertTrue(tf_inspect.isanytargetmethod(f))
        f = test_decorator('tf_decorator1')(f)
        self.assertTrue(tf_inspect.isanytargetmethod(f))
        f = test_decorator('tf_decorator2')(f)
        self.assertTrue(tf_inspect.isanytargetmethod(f))

        class MyModule2:
            pass

        module = MyModule2()
        self.assertFalse(tf_inspect.isanytargetmethod(module))

        def f2():
            pass

        self.assertFalse(tf_inspect.isanytargetmethod(f2))
        f2 = functools.partial(f2, 1)
        self.assertFalse(tf_inspect.isanytargetmethod(f2))
        f2 = test_decorator('tf_decorator1')(f2)
        self.assertFalse(tf_inspect.isanytargetmethod(f2))
        f2 = test_decorator('tf_decorator2')(f2)
        self.assertFalse(tf_inspect.isanytargetmethod(f2))
        self.assertFalse(tf_inspect.isanytargetmethod(lambda: None))
        self.assertFalse(tf_inspect.isanytargetmethod(None))
        self.assertFalse(tf_inspect.isanytargetmethod(1))