コード例 #1
0
ファイル: test_model.py プロジェクト: timowilm1992/reco_model
    def test_lookup_positives(self):
        scores = constant([[1., 0., 2.], [0., 1., 1.]])
        clicks = constant([[2], [1]])

        expected = [2., 1.]

        positive_scores = lookup_positives(scores, clicks)

        with self.test_session():
            self.assertListEqual(positive_scores.eval().tolist(), expected)
コード例 #2
0
ファイル: test_model.py プロジェクト: timowilm1992/reco_model
 def test_predict_scores(self):
     features = {
         'anchor_label':
         constant([[0., 1], [1., 0.]]),
         'label':
         constant([[[0., 1.], [0., 1.], [0., 1.]],
                   [[1., 0.], [1., 0.], [1., 0.]]])
     }
     p = predict_scores(features)
     with self.test_session() as sess:
         sess.run(global_variables_initializer())
         print(p.eval())
コード例 #3
0
ファイル: test_model.py プロジェクト: timowilm1992/reco_model
    def test_create_diffs(self):
        scores = constant([[1., 0., 2.], [0., 1., 1.]])
        positive_scores = [2., 1.]

        expected = [[1., 2., 0.], [1., 0., 0.]]

        diffs = create_diffs(positive_scores, scores)

        with self.test_session():
            self.assertListEqual(diffs.eval().tolist(), expected)
コード例 #4
0
def _calculate_supervised_similarities(y_true) -> Tensor:
    """
    Calculates the target supervised similarities.
    Performs a tensorflow nested loop, in order to compare the values of y_true for range(batch_size).

    :param y_true: the y_true value.
    :return: Tensor containing the target supervised similarities.
    """
    # Get the batch size.
    batch_size = shape(y_true)[0]
    # Initialize outer loop index.
    i = constant(0)
    # Initialize symmetric supervised similarity matrix targets.
    target_similarity = zeros((batch_size, batch_size))

    def outer_loop_condition(_i, _batch_size, _y_true, _target_similarity):
        """Define outer loop condition."""
        return less(_i, _batch_size)

    def outer_loop_body(_i, _batch_size, _y_true, _target_similarity):
        """Define outer loop body."""
        # Initialize inner loop index.
        j = constant(0)

        def inner_loop_condition(_i, _j, _y_true, _target_similarity):
            """Define inner loop condition."""
            return less(_j, _batch_size)

        def inner_loop_body(_i, _j, _y_true, _target_similarity):
            """Define inner loop body."""
            if _y_true[_i] == _y_true[_j]:
                _target_similarity[_i, _j] = 1
            return _i, _j + 1, _y_true, _target_similarity

        # Begin inner while loop.
        _, j, _, _target_similarity = while_loop(
            inner_loop_condition, inner_loop_body,
            [_i, j, _y_true, _target_similarity])
        return _i + 1, _batch_size, _y_true, _target_similarity

    # Begin outer while loop.
    i, _, _, target_similarity = while_loop(
        outer_loop_condition, outer_loop_body,
        [i, batch_size, y_true, target_similarity])
    return target_similarity
コード例 #5
0
    def outer_loop_body(_i, _batch_size, _y_true, _target_similarity):
        """Define outer loop body."""
        # Initialize inner loop index.
        j = constant(0)

        def inner_loop_condition(_i, _j, _y_true, _target_similarity):
            """Define inner loop condition."""
            return less(_j, _batch_size)

        def inner_loop_body(_i, _j, _y_true, _target_similarity):
            """Define inner loop body."""
            if _y_true[_i] == _y_true[_j]:
                _target_similarity[_i, _j] = 1
            return _i, _j + 1, _y_true, _target_similarity

        # Begin inner while loop.
        _, j, _, _target_similarity = while_loop(
            inner_loop_condition, inner_loop_body,
            [_i, j, _y_true, _target_similarity])
        return _i + 1, _batch_size, _y_true, _target_similarity
コード例 #6
0
    def run():
        # 创建一个变量, 初始化为标量 0.
        state = Variable(0, name="counter")

        # 创建一个 op, 其作用是使 state 增加 1

        one = constant(1)
        new_value = add(state, one)
        update = assign(state, new_value)

        # 启动图后, 变量必须先经过`初始化` (init) op 初始化,
        # 首先必须增加一个`初始化` op 到图中.
        init_op = initialize_all_variables()

        # 启动图, 运行 op
        with Session() as sess:
            # 运行 'init' op
            sess.run(init_op)
            # 打印 'state' 的初始值
            print(sess.run(state))
            # 运行 op, 更新 'state', 并打印 'state'
            for _ in range(3):
                sess.run(update)
                print(sess.run(state))
コード例 #7
0
ファイル: bb_network.py プロジェクト: chenBingX/BreadBasket
from BBDATA import *
import tensorflow.python as tf
from cnn_utils import save_model
import matplotlib.pyplot as plt

train_times = 50000
base_path = "/Users/coorchice/Desktop/ML/model/ml/BreadBasket/"
save_path = base_path + str(train_times) + "/"

BBDATA = read_datas('data/')

x_data = tf.placeholder(tf.float32, [None, 135])
y_data = tf.placeholder(tf.float32, [None])
W = tf.Variable(tf.truncated_normal([135, 1], stddev=0.1))
b = tf.Variable(tf.constant(0.1, shape=[1]))
y = tf.nn.relu(tf.matmul(x_data, W) + b)

# 按照交叉熵公式计算交叉熵
with tf.name_scope('loss'):
    # cross_entropy = -tf.reduce_sum(y_data * tf.log(y))
    cross_entropy = tf.reduce_mean((tf.square((y - y_data))))
tf.scalar_summary('loss', cross_entropy)

# init_lr = 0.00001
lr = tf.Variable(0.00005, trainable=False)
# global_step = tf.Variable(0., trainable=False)
# lr = tf.train.exponential_decay(init_lr, global_step=global_step, decay_steps=10000, decay_rate=0.5, staircase=True)

# 使用梯度下降法不断的调整变量,寻求最小的交叉熵
# 此处使用梯度下降法以0.01的学习速率最小化交叉熵
コード例 #8
0
ファイル: cnn_utils.py プロジェクト: chenBingX/BreadBasket
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)
コード例 #9
0
# -*- coding:utf-8 -*-
'''
@Author: zzx
@E-mail: [email protected]
@File: 对多元函数求导.py
@CreateTime: 2020/7/21 15:13
'''

import tensorflow.python as tf

# 2、多元函数求导
X = tf.constant([[1., 2.], [3., 4.]])
y = tf.constant([[1.], [2.]])
# 函数参数,初始化参数随便定义
w = tf.Variable(initial_value=[[1.], [2.]])
b = tf.Variable(initial_value=1.)

# 在这里可以执行自动求导
with tf.GradientTape() as tape:
    L = 0.5 * tf.reduce_sum(tf.square(tf.matmul(X, w) + b - y))

w_grad, b_grad = tape.gradient(L, [w, b])
print("".format(L.numpy(), w_grad.numpy(), b_grad.numpy()))

コード例 #10
0
ファイル: test_fuc.py プロジェクト: zhen8838/Caps-Net-tf
def test_consant():
    t = tf.ones((16, 10))
    b = tf.constant(tf.zeros((t.shape[0], t.shape[1])),
                    name='b')  # b [in_caps,out_caps]