def noise_label(labels): id = range(shape(labels['click_position'])[0]) idx = concatenate( [expand_dims(cast(id, int64), axis=1), labels['click_position']], axis=1) clicked_item = gather_nd(labels['reco'], idx) return cast(equal(expand_dims(clicked_item, axis=1), labels['reco']), float32)
def test_ficken(self): labels = {'click_position': [1, 2], 'reco': [[0, 1, 2], [2, 1, 0]]} id = range(shape(labels['click_position'])[0]) idx = concatenate([ expand_dims(cast(id, int64), axis=1), expand_dims(cast(labels['click_position'], int64), axis=1) ], axis=1) clicked_item = gather_nd(labels['reco'], idx) with self.test_session(): print(clicked_item.eval())
def create_label(click_position, num_labels=10): num_rows = shape(click_position)[0] row_idx = expand_dims(range(num_rows), axis=1) idx = concatenate([row_idx, cast(click_position, int32)], axis=1) labels = SparseTensor(indices=cast(idx, int64), values=ones([num_rows]), dense_shape=[num_rows, num_labels]) return ones([num_rows, num_labels]) - to_dense(labels)
def tf_iou(pred_xy: tf.Tensor, pred_wh: tf.Tensor, vaild_xy: tf.Tensor, vaild_wh: tf.Tensor) -> tf.Tensor: """ calc the iou form pred box with vaild box Parameters ---------- pred_xy : tf.Tensor pred box shape = [out h, out w, anchor num, 2] pred_wh : tf.Tensor pred box shape = [out h, out w, anchor num, 2] vaild_xy : tf.Tensor vaild box shape = [? , 2] vaild_wh : tf.Tensor vaild box shape = [? , 2] Returns ------- tf.Tensor iou value shape = [out h, out w, anchor num ,?] """ b1_xy = tf.expand_dims(pred_xy, -2) b1_wh = tf.expand_dims(pred_wh, -2) b1_wh_half = b1_wh / 2. b1_mins = b1_xy - b1_wh_half b1_maxes = b1_xy + b1_wh_half b2_xy = tf.expand_dims(vaild_xy, 0) b2_wh = tf.expand_dims(vaild_wh, 0) b2_wh_half = b2_wh / 2. b2_mins = b2_xy - b2_wh_half b2_maxes = b2_xy + b2_wh_half intersect_mins = tf.maximum(b1_mins, b2_mins) intersect_maxes = tf.minimum(b1_maxes, b2_maxes) intersect_wh = tf.maximum(intersect_maxes - intersect_mins, 0.) intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1] b1_area = b1_wh[..., 0] * b1_wh[..., 1] b2_area = b2_wh[..., 0] * b2_wh[..., 1] iou = intersect_area / (b1_area + b2_area - intersect_area) return iou
def main(ckpt_weights, image_size, output_size, model_def, class_num, depth_multiplier, obj_thresh, iou_thresh, train_set, test_image): h = Helper(None, class_num, f'data/{train_set}_anchor.npy', np.reshape(np.array(image_size), (-1, 2)), np.reshape(np.array(output_size), (-1, 2))) network = eval(model_def) # type :yolo_mobilev2 yolo_model, yolo_model_warpper = network([image_size[0], image_size[1], 3], len(h.anchors[0]), class_num, alpha=depth_multiplier) yolo_model_warpper.load_weights(str(ckpt_weights)) print(INFO, f' Load CKPT {str(ckpt_weights)}') orig_img = h._read_img(str(test_image)) image_shape = orig_img.shape[0:2] img, _ = h._process_img(orig_img, true_box=None, is_training=False, is_resize=True) """ load images """ img = tf.expand_dims(img, 0) y_pred = yolo_model_warpper.predict(img) """ box list """ _yxyx_box = [] _yxyx_box_scores = [] """ preprocess label """ for l, pred_label in enumerate(y_pred): """ split the label """ pred_xy = pred_label[..., 0:2] pred_wh = pred_label[..., 2:4] pred_confidence = pred_label[..., 4:5] pred_cls = pred_label[..., 5:] # box_scores = obj_score * class_score box_scores = tf.sigmoid(pred_cls) * tf.sigmoid(pred_confidence) # obj_mask = pred_confidence_score[..., 0] > obj_thresh """ reshape box """ # NOTE tf_xywh_to_all will auto use sigmoid function pred_xy_A, pred_wh_A = tf_xywh_to_all(pred_xy, pred_wh, l, h) boxes = correct_box(pred_xy_A, pred_wh_A, image_size, image_shape) boxes = tf.reshape(boxes, (-1, 4)) box_scores = tf.reshape(box_scores, (-1, class_num)) """ append box and scores to global list """ _yxyx_box.append(boxes) _yxyx_box_scores.append(box_scores) yxyx_box = tf.concat(_yxyx_box, axis=0) yxyx_box_scores = tf.concat(_yxyx_box_scores, axis=0) mask = yxyx_box_scores >= obj_thresh """ do nms for every classes""" _boxes = [] _scores = [] _classes = [] for c in range(class_num): class_boxes = tf.boolean_mask(yxyx_box, mask[:, c]) class_box_scores = tf.boolean_mask(yxyx_box_scores[:, c], mask[:, c]) select = tf.image.non_max_suppression(class_boxes, scores=class_box_scores, max_output_size=30, iou_threshold=iou_thresh) class_boxes = tf.gather(class_boxes, select) class_box_scores = tf.gather(class_box_scores, select) _boxes.append(class_boxes) _scores.append(class_box_scores) _classes.append(tf.ones_like(class_box_scores) * c) boxes = tf.concat(_boxes, axis=0) classes = tf.concat(_classes, axis=0) scores = tf.concat(_scores, axis=0) """ draw box """ font = ImageFont.truetype(font='asset/FiraMono-Medium.otf', size=tf.cast( tf.floor(3e-2 * image_shape[0] + 0.5), tf.int32).numpy()) thickness = (image_shape[0] + image_shape[1]) // 300 """ show result """ if len(classes) > 0: pil_img = Image.fromarray(orig_img) print(f'[top\tleft\tbottom\tright\tscore\tclass]') for i, c in enumerate(classes): box = boxes[i] score = scores[i] label = '{:2d} {:.2f}'.format(int(c.numpy()), score.numpy()) draw = ImageDraw.Draw(pil_img) label_size = draw.textsize(label, font) top, left, bottom, right = box print( f'[{top:.1f}\t{left:.1f}\t{bottom:.1f}\t{right:.1f}\t{score:.2f}\t{int(c):2d}]' ) top = max(0, tf.cast(tf.floor(top + 0.5), tf.int32)) left = max(0, tf.cast(tf.floor(left + 0.5), tf.int32)) bottom = min(image_shape[0], tf.cast(tf.floor(bottom + 0.5), tf.int32)) right = min(image_shape[1], tf.cast(tf.floor(right + 0.5), tf.int32)) if top - image_shape[0] >= 0: text_origin = tf.convert_to_tensor([left, top - label_size[1]]) else: text_origin = tf.convert_to_tensor([left, top + 1]) for j in range(thickness): draw.rectangle([left + j, top + j, right - j, bottom - j], outline=h.colormap[c]) draw.rectangle( [tuple(text_origin), tuple(text_origin + label_size)], fill=h.colormap[c]) draw.text(text_origin, label, fill=(0, 0, 0), font=font) del draw pil_img.show() else: print(NOTE, ' no boxes detected')
def create_diffs(positive_scores, scores): return expand_dims(positive_scores, axis=1) - scores
def lookup_positives(scores, click_position): num_rows = shape(scores)[0] row_idx = expand_dims(range(num_rows), axis=1) idx = concatenate([row_idx, cast(click_position, int32)], axis=1) return gather_nd(scores, idx)
def predict_scores(features): candidate = dense(features['label'], 10) anchor = dense(features['anchor_label'], 10) scores = matmul(candidate, expand_dims(anchor, axis=1), transpose_b=True) return squeeze(scores)