コード例 #1
0
 def __init__(self, state_size, window_size, trend, skip):
     self.state_size = state_size
     self.window_size = window_size
     self.half_window = window_size // 2
     self.trend = trend
     self.skip = skip
     self.X = tf.placeholder(tf.float32, (None, self.state_size))
     self.REWARDS = tf.placeholder(tf.float32, (None))
     self.ACTIONS = tf.placeholder(tf.int32, (None))
     feed_forward = tf.layers.dense(self.X,
                                    self.LAYER_SIZE,
                                    activation=tf.nn.relu)
     self.logits = tf.layers.dense(feed_forward,
                                   self.OUTPUT_SIZE,
                                   activation=tf.nn.softmax)
     input_y = tf.one_hot(self.ACTIONS, self.OUTPUT_SIZE)
     loglike = tf.log((input_y * (input_y - self.logits) + (1 - input_y) *
                       (input_y + self.logits)) + 1)
     rewards = tf.tile(tf.reshape(self.REWARDS, (-1, 1)),
                       [1, self.OUTPUT_SIZE])
     self.cost = -tf.reduce_mean(loglike * (rewards + 1))
     self.optimizer = tf.train.AdamOptimizer(
         learning_rate=self.LEARNING_RATE).minimize(self.cost)
     self.sess = tf.InteractiveSession()
     self.sess.run(tf.global_variables_initializer())
コード例 #2
0
def sinusoidal_position_encoding(inputs, mask, repr_dim):
    T = tf.shape(inputs)[1]
    pos = tf.reshape(tf.range(0.0, tf.to_float(T), dtype=tf.float32), [-1, 1])
    i = np.arange(0, repr_dim, 2, np.float32)
    denom = np.reshape(np.power(10000.0, i / repr_dim), [1, -1])
    enc = tf.expand_dims(
        tf.concat(
            [tf.sin(pos / denom), tf.cos(pos / denom)], 1), 0)
    return tf.tile(enc, [tf.shape(inputs)[0], 1, 1]) * tf.expand_dims(
        tf.to_float(mask), -1)
コード例 #3
0
def position_encoding(inputs):
    T = tf.shape(inputs)[1]
    repr_dim = inputs.get_shape()[-1].value
    pos = tf.reshape(tf.range(0.0, tf.to_float(T), dtype=tf.float32), [-1, 1])
    i = np.arange(0, repr_dim, 2, np.float32)
    denom = np.reshape(np.power(10000.0, i / repr_dim), [1, -1])
    enc = tf.expand_dims(
        tf.concat(
            [tf.sin(pos / denom), tf.cos(pos / denom)], 1), 0)
    return tf.tile(enc, [tf.shape(inputs)[0], 1, 1])
コード例 #4
0
 def __init__(self, state_size, window_size, trend, skip):
     self.state_size = state_size
     self.window_size = window_size
     self.half_window = window_size // 2
     self.trend = trend
     self.skip = skip
     tf.reset_default_graph()
     self.X = tf.placeholder(tf.float32, (None, self.state_size))
     self.Y = tf.placeholder(tf.float32, (None, self.state_size))
     self.ACTION = tf.placeholder(tf.float32, (None))
     self.REWARD = tf.placeholder(tf.float32, (None))
     self.batch_size = tf.shape(self.ACTION)[0]
     
     with tf.variable_scope('curiosity_model'):
         action = tf.reshape(self.ACTION, (-1,1))
         state_action = tf.concat([self.X, action], axis=1)
         save_state = tf.identity(self.Y)
         
         feed = tf.layers.dense(state_action, 32, activation=tf.nn.relu)
         self.curiosity_logits = tf.layers.dense(feed, self.state_size)
         self.curiosity_cost = tf.reduce_sum(tf.square(save_state - self.curiosity_logits), axis=1)
         
         self.curiosity_optimizer = tf.train.RMSPropOptimizer(self.LEARNING_RATE)            .minimize(tf.reduce_mean(self.curiosity_cost))
     
     total_reward = tf.add(self.curiosity_cost, self.REWARD)
     
     with tf.variable_scope("q_model"):
         with tf.variable_scope("eval_net"):
             x_action = tf.layers.dense(self.X, 128, tf.nn.relu)
             self.logits = tf.layers.dense(x_action, self.OUTPUT_SIZE)
         
         with tf.variable_scope("target_net"):
             y_action = tf.layers.dense(self.Y, 128, tf.nn.relu)
             y_q = tf.layers.dense(y_action, self.OUTPUT_SIZE)
         
         q_target = total_reward + self.GAMMA * tf.reduce_max(y_q, axis=1)
         action = tf.cast(self.ACTION, tf.int32)
         action_indices = tf.stack([tf.range(self.batch_size, dtype=tf.int32), action], axis=1)
         q = tf.gather_nd(params=self.logits, indices=action_indices)
         self.cost = tf.losses.mean_squared_error(labels=q_target, predictions=q)
         self.optimizer = tf.train.RMSPropOptimizer(self.LEARNING_RATE).minimize(
         self.cost, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "q_model/eval_net"))
         
     t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='q_model/target_net')
     e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='q_model/eval_net')
     self.target_replace_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
     
     self.sess = tf.InteractiveSession()
     self.sess.run(tf.global_variables_initializer())
コード例 #5
0
ファイル: access.py プロジェクト: camille-004/datahacks-2021
 def _linear(first_dim, second_dim, name, activation=None):
   """Returns a linear transformation of `inputs`, followed by a reshape."""
   linear = snt.Linear(first_dim * second_dim, name=name)(inputs)
   if activation is not None:
     linear = activation(linear, name=name + '_activation')
   return tf.reshape(linear, [-1, first_dim, second_dim])
    def __init__(self, state_size, window_size, trend, skip):
        self.state_size = state_size
        self.window_size = window_size
        self.half_window = window_size // 2
        self.trend = trend
        self.skip = skip
        tf.reset_default_graph()
        self.INITIAL_FEATURES = np.zeros((4, self.state_size))
        self.X = tf.placeholder(tf.float32, (None, None, self.state_size))
        self.Y = tf.placeholder(tf.float32, (None, None, self.state_size))
        self.hidden_layer = tf.placeholder(tf.float32,
                                           (None, 2 * self.LAYER_SIZE))
        self.ACTION = tf.placeholder(tf.float32, (None))
        self.REWARD = tf.placeholder(tf.float32, (None))
        self.batch_size = tf.shape(self.ACTION)[0]
        self.seq_len = tf.shape(self.X)[1]

        with tf.variable_scope('curiosity_model'):
            action = tf.reshape(self.ACTION, (-1, 1, 1))
            repeat_action = tf.tile(action, [1, self.seq_len, 1])
            state_action = tf.concat([self.X, repeat_action], axis=-1)
            save_state = tf.identity(self.Y)
            cell = tf.nn.rnn_cell.LSTMCell(self.LAYER_SIZE,
                                           state_is_tuple=False)
            self.rnn, last_state = tf.nn.dynamic_rnn(
                inputs=state_action,
                cell=cell,
                dtype=tf.float32,
                initial_state=self.hidden_layer)
            self.curiosity_logits = tf.layers.dense(self.rnn[:, -1],
                                                    self.state_size)
            self.curiosity_cost = tf.reduce_sum(
                tf.square(save_state[:, -1] - self.curiosity_logits), axis=1)

            self.curiosity_optimizer = tf.train.RMSPropOptimizer(
                self.LEARNING_RATE).minimize(
                    tf.reduce_mean(self.curiosity_cost))

        total_reward = tf.add(self.curiosity_cost, self.REWARD)

        with tf.variable_scope("q_model"):
            with tf.variable_scope("eval_net"):
                cell = tf.nn.rnn_cell.LSTMCell(self.LAYER_SIZE,
                                               state_is_tuple=False)
                rnn, self.last_state = tf.nn.dynamic_rnn(
                    inputs=self.X,
                    cell=cell,
                    dtype=tf.float32,
                    initial_state=self.hidden_layer)
                self.logits = tf.layers.dense(rnn[:, -1], self.OUTPUT_SIZE)

            with tf.variable_scope("target_net"):
                cell = tf.nn.rnn_cell.LSTMCell(self.LAYER_SIZE,
                                               state_is_tuple=False)
                rnn, last_state = tf.nn.dynamic_rnn(
                    inputs=self.Y,
                    cell=cell,
                    dtype=tf.float32,
                    initial_state=self.hidden_layer)
                y_q = tf.layers.dense(rnn[:, -1], self.OUTPUT_SIZE)

            q_target = total_reward + self.GAMMA * tf.reduce_max(y_q, axis=1)
            action = tf.cast(self.ACTION, tf.int32)
            action_indices = tf.stack(
                [tf.range(self.batch_size, dtype=tf.int32), action], axis=1)
            q = tf.gather_nd(params=self.logits, indices=action_indices)
            self.cost = tf.losses.mean_squared_error(labels=q_target,
                                                     predictions=q)
            self.optimizer = tf.train.RMSPropOptimizer(
                self.LEARNING_RATE).minimize(
                    self.cost,
                    var_list=tf.get_collection(
                        tf.GraphKeys.TRAINABLE_VARIABLES, "q_model/eval_net"))

        t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                     scope='q_model/target_net')
        e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                     scope='q_model/eval_net')
        self.target_replace_op = [
            tf.assign(t, e) for t, e in zip(t_params, e_params)
        ]

        self.sess = tf.InteractiveSession()
        self.sess.run(tf.global_variables_initializer())