コード例 #1
0
def main(_):

    mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
    ''' La data esta dividida en 3 partes: 
	55K data points para el entrenamiento (mnist.train)	
	10K para el test (mnist.test)
	5K para la validacion (mnist.validation)
     Cada DATA POINT tiene dos partes:
	la imagen  ("X")  -> mnist.train.images
	la etiqueta correspondiente. ("Y")  -> mnist.train.labels
	    
     Cada imagen es de 28x28 pixeles (matriz) -> Lo podemos ver como un vector de
	    784 numeros cuando hacemos un Flatten. En el metodo de Softmax Regression no necesitamos explotar esa estructura 2D de la imagen.

     mnist.train.images es un tensor (un array n-dimensional) con forma [55k,784] 
	osea 55K imagenes donde cada una es un vector de 784 posiciones//pixeles. 
	     1er termino: indice en la lista de imagenes.
	     2o termino: indice a cada pixel de cada imagen.
	Cada entrada en el tensor es la intensidad de un pixel entre 0 y 1 para un pixel particular en una imagen particular. 
	
     Las etiquetas tendran un valor de 0 a 9 segun el numero escrito. En este caso usaremos one-hot vectors (todas la dimensiones a 0 excepto 1) para las etiquetas.
     mnist.train.labels tiene la forma [55K,10]

     Softmax regression es un modelo simple. Este nos da una lista de valores entre 0 y 1 que al sumarlos alcanzan el 1. Estos valores son las probabilidades de que la imagen pertenezca a una clase determinada. Se computa a partir de los scores. Para aplicar Softmax debemos realizar dos pasos:
         Sumamos todas las evidencias de que nuestra input sea de una determinadas clases. Lo haremos mediante pesos (Cuanto mayor sea-> mas a favor que la evidencia indique la clase acertada). 
	 Convertimos esa evidencia en probabilidades. 
	 Ademas anadimos un bias que nos da informacion extra independientemente de como sean las inputs que le pasemos.
	 y=nuestras probabilidades despues de aplicar softmax(evidencia)
	 Softmax nos sirve como funcion de activacion//enlace que da forma a la salida de tal manera que distribuye las probabilidades segun el numero de clases.

	y=softmax(Wx+B)
  '''

    # CREAMOS EL MODELO en TF. Al definir el modelo, ahora TF es capaz de entrenarlo facilmente porque sabe el grado entero de operaciones que vas a realizar. Entonces el automaticamente sabe aplicar el algoritmo de backpropagation para definir eficientemente como las variables (W y b) afectan a la perdida que deseamos minimizar. Podremos aplicar la optimizacion que deseemos

    # X es un placeholder, es decir, un valor que pondremos  como entrada cuando queramos que TF runee una operacion//calculo. Queremos poder meter como input cualquier numero de imagenes cada una de ellas representada con un vector de 784 posiciones. Por lo tanto definimos el placeholder con [None,784] donde el none implica que la dimension puede tener cualquier longitud.
    x = tf.placeholder(tf.float32, [None, 784])

    # Para los pesos de nuestro modelo creamos una Variable. Las variables son tensores modificables que se alojan en el grafo de interaccion de operaciones de TF. Como vemos se define como [784 pixeles,10 clases]. Es un tensor lleno de 0s
    W = tf.Variable(tf.zeros([784, 10]))
    # bias para las 10 clases. Es un tensor lleno de 0s
    b = tf.Variable(tf.zeros([10]))

    #Definimos el modelo. Las operaciones que lo definen. Luego ya aplicaremos softmax. y es la distribucion de probabilidad predicha.
    y = tf.matmul(x, W) + b

    # Defimos el coste e optimizacion. El coste nos indica cuan lejos esta nuestro modelo del deseado. y_ es la distribucion real (one-hot).
    y_ = tf.placeholder(tf.float32, [None, 10])
    ''' The raw formulation of cross-entropy,
  #
  #   tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)),
  #                                 reduction_indices=[1]))
  #
  # can be numerically unstable.
  #
  # So here we use tf.nn.softmax_cross_entropy_with_logits on the raw
    outputs of 'y', and then average across the batch.
  '''

    #hacemos la entropia cruzada a nivel de logits.Respecto nuestra prediccion y la real.
    cross_entropy = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(y, y_))

    #Definimos que tipo de optimizacion queremos utilizar con tal de reducir la perdida. En este caso utilizamos el Gradiente Descendiente como optimizador para reducir la entropia cruzada con un rate de aprendizaje de 0.5
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

    sess = tf.InteractiveSession()

    #Modelo configurado para el entrenamiento. Antes de lanzarlo creamos una operacion para poden inicializar todas las variables que hemos creado. y la runeamos.

    # ENTRENAMIENTO
    tf.initialize_all_variables().run()

    #Hacemos la secuencia de entrenamiento 1K veces.
    for _ in range(1000):
        #En cada step del loop tenemos un batch de 100 data points de nuestro set de entrenamiento.
        #Usar pequenos batches de data random se le conoce como entrenamiento estocastico, en este caso  hacemos un gradiente descendiente estocastico. Idealmente nos gustaria trabajar con toda la informacion en casa step del entrenamiento pero eso es muy costoso.
        batch_xs, batch_ys = mnist.train.next_batch(100)
        #runeamos el train_step alimentando a x con una porcion de la info (batch_xs) y a las etiquetas con un pequeno batch_ys. los batches con tal que reeplacen a los placeholders.
        sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

    # TESTEAMOS NUESTRO MODELO (ya entrenado)
    #tf.argmax(y,1) nos dara el indice del mayor valor dentro del tensor y en algunos ejes, es decir nos dara la etiqueta a la imagen que el modelo cree que es la correcta. En el caso de aplicar esa funcion con y_ nos devolvera la etitqueta real. Al hacer un equal obtendremos una lista de booleanos si nuestra prediccion coincide o no.
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

    #para saber la precision primero hacemos un cast es decir de [true,false,true,true] pasamos a [1,0,0,1]. Y luego le hacemos la media.
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    print("precision")

    print(
        sess.run(accuracy,
                 feed_dict={
                     x: mnist.test.images,
                     y_: mnist.test.labels
                 }))
コード例 #2
0
ファイル: hybrid_cifar10.py プロジェクト: ZERO2ER0/opticalCNN
def train(params,
          summary_every=100,
          print_every=250,
          save_every=1000,
          verbose=True):
    # Unpack params
    wavelength = params.get('wavelength', 532e-9)
    isNonNeg = params.get('isNonNeg', False)
    numIters = params.get('numIters', 1000)
    activation = params.get('activation', tf.nn.relu)
    opt_type = params.get('opt_type', 'ADAM')

    # switches
    doMultichannelConv = params.get('doMultichannelConv', False)
    doMean = params.get('doMean', False)
    doOpticalConv = params.get('doOpticalConv', True)
    doAmplitudeMask = params.get('doAmplitudeMask', False)
    doZernike = params.get('doZernike', False)
    doFC = params.get('doFC', False)
    doConv1 = params.get('doConv1', True)
    doConv2 = params.get('doConv2', True)
    doConv3 = params.get('doConv3', False)
    doNonnegReg = params.get('doNonnegReg', False)
    doOptNeg = params.get('doOptNeg', False)
    doTiledConv = params.get('doTiledConv', False)

    z_modes = params.get('z_modes', 1024)
    convdim1 = params.get('convdim1', 100)
    convdim2 = params.get('convdim2', 100)
    convdim3 = params.get('convdim3', 100)

    depth1 = params.get('depth1', 3)
    depth2 = params.get('depth2', 3)
    depth3 = params.get('depth3', 3)

    padamt = params.get('padamt', 0)
    dim = params.get('dim', 60)

    buff = params.get('buff', 4)
    rows = params.get('rows', 4)
    cols = params.get('cols', 4)

    # constraint helpers
    def nonneg(input_tensor):
        return tf.abs(input_tensor) if isNonNeg else input_tensor

    def vis_weights(W_conv, depth, buff, rows, cols, name):
        kernel_list = tf.split(tf.transpose(W_conv, [2, 0, 1, 3]),
                               depth,
                               axis=3)
        kernels_pad = [
            tf.pad(kernel,
                   [[0, 0], [buff, buff], [buff + 4, buff + 4], [0, 0]])
            for kernel in kernel_list
        ]
        W_conv_tiled = tf.concat([
            tf.concat(kernels_pad[i * cols:(i + 1) * cols], axis=2)
            for i in range(rows)
        ],
                                 axis=1)
        tf.summary.image(name, W_conv_tiled, 3)

    def vis_h(h_conv, depth, rows, cols, name):
        # this was for viewing multichannel convolution
        h_conv_split = tf.split(h_conv, depth, axis=3)
        h_conv_tiled = tf.concat([
            tf.concat(h_conv_split[i * cols:(i + 1) * cols], axis=2)
            for i in range(rows)
        ],
                                 axis=1)
        tf.summary.image(name, h_conv_tiled, 3)

    sess = tf.InteractiveSession(config=tf.ConfigProto(
        allow_soft_placement=True))

    # input placeholders
    classes = 10
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, shape=[None, 32, 32])
        y_ = tf.placeholder(tf.int64, shape=[None])
        keep_prob = tf.placeholder(tf.float32)

        x_image = tf.reshape(x, [-1, 32, 32, 1])
        paddings = tf.constant([[
            0,
            0,
        ], [padamt, padamt], [padamt, padamt], [0, 0]])
        x_image = tf.pad(x_image, paddings)
        # x_image = tf.image.resize_nearest_neighbor(x_image, size=(dim, dim))
        tf.summary.image('input', x_image, 3)

        # if not isNonNeg and not doNonnegReg:
        #     x_image -= tf.reduce_mean(x_image)

    # regularizers
    global_step = tf.Variable(0, trainable=False)
    if doNonnegReg:
        reg_scale = tf.train.polynomial_decay(0.,
                                              global_step,
                                              decay_steps=6000,
                                              end_learning_rate=6000.)
        psf_reg = optics_alt.nonneg_regularizer(reg_scale)
    else:
        psf_reg = None

    l2_reg = tf.contrib.layers.l2_regularizer(1e-1, scope=None)

    # build model
    h_conv_out = x_image
    fcdepth = 1
    doVis = True

    if doConv1:
        with tf.name_scope('conv1'):
            if doTiledConv:
                tiled_dim = (32) * rows
                init_vals_pos = tf.truncated_normal(
                    [tiled_dim, tiled_dim, 1, 1], stddev=0.1) + .1
                W_conv1_tiled = tf.Variable(init_vals_pos,
                                            name='W_conv1_tiled')
                W_conv1_tiled = nonneg(W_conv1_tiled)
                tf.summary.image(
                    "W_conv1_tiled",
                    tf.expand_dims(tf.squeeze(W_conv1_tiled, -1), 0))

                tile_pad = tiled_dim // 2 - 16
                tile_paddings = tf.constant([[
                    0,
                    0,
                ], [tile_pad, tile_pad], [tile_pad, tile_pad], [0, 0]])
                x_padded = tf.pad(x_image, tile_paddings)
                tf.summary.image('input', x_padded, 3)

                fftpadamt = int(tiled_dim / 2)
                h_conv_tiled = tf.abs(
                    optics.fft_conv2d(fftpad(x_padded, fftpadamt),
                                      fftpad_psf(W_conv1_tiled, fftpadamt)))
                h_conv_tiled = fftunpad(
                    tf.cast(h_conv_tiled, dtype=tf.float32), fftpadamt)

                h_conv_split2d = split2d_layer(h_conv_tiled, rows, cols)
                b_conv1 = bias_variable([depth1], 'b_conv1')
                h_conv1 = h_conv_split2d + b_conv1
            elif doOpticalConv:
                tiled_dim = (32) * cols
                tile_pad = tiled_dim // 2 - 16
                tile_paddings = tf.constant([[
                    0,
                    0,
                ], [tile_pad, tile_pad], [tile_pad, tile_pad], [0, 0]])
                x_padded = tf.pad(x_image, tile_paddings)
                tf.summary.image('input', x_padded, 3)

                r_NA = tiled_dim / 2
                hm_reg_scale = 1e-2
                # initialize with optimized phase mask
                # mask = np.load('maskopt/quickdraw9_zernike1024.npy')
                # initializer = tf.constant_initializer(mask)
                initializer = None

                h_conv1_opt = optical_conv_layer(
                    x_padded,
                    hm_reg_scale,
                    r_NA,
                    n=1.48,
                    wavelength=wavelength,
                    activation=None,
                    amplitude_mask=doAmplitudeMask,
                    zernike=doZernike,
                    n_modes=z_modes,
                    initializer=initializer,
                    name='opt_conv1_pos')

                # h_conv1_opt_neg = optical_conv_layer(x_padded, hm_reg_scale, r_NA, n=1.48, wavelength=wavelength,
                #        activation=None, amplitude_mask=doAmplitudeMask, zernike=doZernike,
                #        n_modes=z_modes, initializer=initializer, name='opt_conv1_neg')

                h_conv1_opt = tf.cast(h_conv1_opt, dtype=tf.float32)
                h_conv_split2d = split2d_layer(h_conv1_opt, 2 * rows, cols)
                b_conv1 = bias_variable([depth1], 'b_conv1')
                h_conv1 = h_conv_split2d + b_conv1

            else:
                if doOptNeg:
                    # positive weights
                    init_vals_pos = tf.truncated_normal(
                        [convdim1, convdim1, 1, depth1], stddev=0.1) + .1
                    W_conv1_pos = tf.Variable(init_vals_pos,
                                              name='W_conv1_pos')
                    # W_conv1 = weight_variable([convdim1, convdim1, 1, depth1], name='W_conv1')
                    W_conv1_pos = nonneg(W_conv1_pos)
                    #W_conv1_nonneg /= tf.reduce_sum(tf.abs(W_conv1_nonneg)) # conservation of energy
                    tf.contrib.layers.apply_regularization(
                        l2_reg,
                        weights_list=[tf.transpose(W_conv1_pos, [3, 0, 1, 2])])

                    # negative weights
                    init_vals_neg = tf.truncated_normal(
                        [convdim1, convdim1, 1, depth1], stddev=0.1) + .1
                    W_conv1_neg = tf.Variable(init_vals_neg,
                                              name='W_conv1_neg')
                    # W_conv1 = weight_variable([convdim1, convdim1, 1, depth1], name='W_conv1')
                    W_conv1_neg = nonneg(W_conv1_neg)
                    # W_conv1_nonneg /= tf.reduce_sum(tf.abs(W_conv1_nonneg)) # conservation of energy
                    tf.contrib.layers.apply_regularization(
                        l2_reg,
                        weights_list=[tf.transpose(W_conv1_neg, [3, 0, 1, 2])])

                    W_conv1 = tf.subtract(W_conv1_pos, W_conv1_neg)

                    if doVis:
                        vis_weights(W_conv1_pos, depth1, buff, rows, cols,
                                    'W_conv1_pos')
                        vis_weights(W_conv1_neg, depth1, buff, rows, cols,
                                    'W_conv1_neg')

                elif isNonNeg:
                    init_vals = tf.truncated_normal(
                        [convdim1, convdim1, 1, depth1], stddev=0.1)
                    W_conv1 = tf.Variable(init_vals, name='W_conv1_nn') + .1
                    # W_conv1 = weight_variable([convdim1, convdim1, 1, depth1], name='W_conv1')
                    W_conv1 = nonneg(W_conv1)
                    #W_conv1_nonneg /= tf.reduce_sum(tf.abs(W_conv1_nonneg)) # conservation of energy
                else:
                    W_conv1 = weight_variable([convdim1, convdim1, 1, depth1],
                                              name='W_conv1')

                    if psf_reg is not None:
                        tf.contrib.layers.apply_regularization(
                            psf_reg,
                            weights_list=[tf.transpose(W_conv1, [3, 0, 1, 2])])

                vis_weights(W_conv1, depth1, buff, rows, cols, 'W_conv1')

                W_conv1_flip = tf.reverse(W_conv1,
                                          axis=[0, 1])  # flip if using tfconv
                h_conv1 = conv2d(x_image, W_conv1_flip)
                h_conv1 /= tf.reduce_max(h_conv1,
                                         axis=[1, 2, 3],
                                         keep_dims=True)

                b_conv1 = bias_variable([depth1], 'b_conv1')
                h_conv1 = h_conv1 + b_conv1

            vis_h(h_conv1, depth1, rows, cols, 'h_conv1')
            variable_summaries("h_conv1", h_conv1)
            h_conv1_drop = tf.nn.dropout(h_conv1, keep_prob)

            #h_pool1 = max_pool_2x2(h_conv1)
            h_pool1 = h_conv1_drop

            if doNonnegReg:
                h_pool1 = optics_alt.shifted_relu(h_pool1)
            else:
                h_pool1 = activation(h_pool1)
            variable_summaries("h_conv1_post", h_pool1)

            h_conv_out = h_pool1
            #dim = 16
            fcdepth = depth1

    if doConv2:
        with tf.name_scope('conv2'):
            W_conv2 = weight_variable([convdim2, convdim2, depth1, depth2],
                                      name='W_conv2')
            # vis_weights(W_conv2, depth2, buff, rows, cols, 'W_conv2')
            b_conv2 = bias_variable([depth2], name='b_conv2')
            h_conv2 = conv2d(h_pool1, W_conv2) + b_conv2

            # h_pool2 = max_pool_2x2(h_conv2)
            h_pool2 = h_conv2
            variable_summaries("h_conv2", h_pool2)

            h_conv2_drop = tf.nn.dropout(h_pool2, keep_prob)
            h_conv2_drop = activation(h_conv2_drop)
            variable_summaries("h_conv2_post", h_conv2_drop)
            h_conv_out = h_conv2_drop
            # dim = 16
            fcdepth = depth2

    if doConv3:
        with tf.name_scope('conv3'):
            W_conv3 = weight_variable([convdim3, convdim3, depth2, depth3],
                                      name='W_conv3')
            # vis_weights(W_conv3, depth3, buff, rows, cols, 'W_conv3')
            b_conv3 = bias_variable([depth3], name='b_conv3')

            h_conv3 = conv2d(h_pool2, W_conv3) + b_conv3
            h_pool3 = max_pool_2x2(h_conv3)
            variable_summaries("h_conv3", h_pool3)

            h_conv3_drop = tf.nn.dropout(h_pool3, keep_prob)
            h_conv3_drop = activation(h_conv3_drop)
            variable_summaries("h_conv3_post", h_conv3_drop)
            h_conv_out = h_conv3_drop
            fcdepth = depth3
            dim = 16

    # choose output layer here
    with tf.name_scope('fc'):
        h_conv_out = tf.cast(h_conv_out, dtype=tf.float32)

        fcsize = dim * dim * fcdepth
        hidden_dim = classes
        W_fc1 = weight_variable([fcsize, hidden_dim], name='W_fc1')
        b_fc1 = bias_variable([hidden_dim], name='b_fc1')
        h_conv_flat = tf.reshape(h_conv_out, [-1, fcsize])

        y_out = tf.matmul(h_conv_flat, W_fc1) + b_fc1

        # h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

        # W_fc2 = weight_variable([hidden_dim, classes])
        # b_fc2 = bias_variable([classes])
        # y_out = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

    tf.summary.image('output', tf.reshape(y_out, [-1, 2, 5, 1]), 3)

    # loss, train, acc
    with tf.name_scope('cross_entropy'):
        total_data_loss = tf.nn.softmax_cross_entropy_with_logits(
            labels=tf.one_hot(y_, classes), logits=y_out)
        data_loss = tf.reduce_mean(total_data_loss)
        reg_loss = tf.reduce_sum(
            tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
        total_loss = tf.add(data_loss, reg_loss)
        tf.summary.scalar('data_loss', data_loss)
        tf.summary.scalar('reg_loss', reg_loss)
        tf.summary.scalar('total_loss', total_loss)

    if opt_type == 'ADAM':
        train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
            total_loss, global_step)
    elif opt_type == 'adadelta':
        train_step = tf.train.AdadeltaOptimizer(FLAGS.learning_rate_ad,
                                                rho=.9).minimize(
                                                    total_loss, global_step)
    else:
        train_step = tf.train.MomentumOptimizer(FLAGS.learning_rate,
                                                momentum=0.5,
                                                use_nesterov=True).minimize(
                                                    total_loss, global_step)

    with tf.name_scope('accuracy'):
        correct_prediction = tf.equal(tf.argmax(y_out, 1), y_)
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        tf.summary.scalar('accuracy', accuracy)

    losses = []

    # tensorboard setup
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
    test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')

    tf.global_variables_initializer().run()

    # add ops to save and restore all the variables
    saver = tf.train.Saver(max_to_keep=2)
    save_path = os.path.join(FLAGS.log_dir, 'model.ckpt')

    x_train_all, y_train_all, x_test, y_test, _, _ = get_CIFAR10_grayscale(
        num_training=49000, num_validation=1000, num_test=0)
    num_training = x_train_all.shape[0]

    def get_feed(train, batch_size=50, augmentation=False):
        idcs = np.random.randint(0, num_training, batch_size)
        x = x_train_all[idcs, :, :]
        y = y_train_all[idcs]

        if augmentation:
            angle = np.random.uniform(low=0.0, high=20.0)
            x = rotate(x, angle, axes=(2, 1), reshape=True)
            x = resize(x, (32, 32))

        return x, y

    for i in range(FLAGS.num_iters):
        x_train, y_train = get_feed(train=True, augmentation=False)
        _, loss, reg_loss_graph, train_accuracy, train_summary = sess.run(
            [train_step, total_loss, reg_loss, accuracy, merged],
            feed_dict={
                x: x_train,
                y_: y_train,
                keep_prob: FLAGS.dropout
            })
        losses.append(loss)

        if i % summary_every == 0:
            train_writer.add_summary(train_summary, i)

            test_summary, test_accuracy = sess.run([merged, accuracy],
                                                   feed_dict={
                                                       x: x_test,
                                                       y_: y_test,
                                                       keep_prob: 1.0
                                                   })
            test_writer.add_summary(test_summary, i)
            if verbose:
                print('step %d: test acc %g' % (i, test_accuracy))

        if i > 0 and i % save_every == 0:
            # print("Saving model...")
            saver.save(sess, save_path, global_step=i)

        if i % print_every == 0:
            if verbose:
                print('step %d:\t loss %g,\t reg_loss %g,\t train acc %g' %
                      (i, loss, reg_loss_graph, train_accuracy))

    #test_batches = []
    # for i in range(4):
    #     idx = i*500
    #     batch_acc = accuracy.eval(feed_dict={x: x_test[idx:idx+500, :], y_: y_test[idx:idx+500], keep_prob: 1.0})
    #     test_batches.append(batch_acc)
    # test_acc = np.mean(test_batches)

    test_acc = accuracy.eval(feed_dict={x: x_test, y_: y_test, keep_prob: 1.0})
    print('final step %d, train accuracy %g, test accuracy %g' %
          (i, train_accuracy, test_acc))
    #sess.close()

    train_writer.close()
    test_writer.close()
コード例 #3
0
ファイル: run_charades_scm.py プロジェクト: zhzhuangxue/SCDM
def train(sub_dir, logging, model_save_dir, result_save_dir):

    if not os.path.exists(options['word_fts_path']):
        meta_data, train_data, test_data = get_video_data_jukin(options['video_data_path_train'], options['video_data_path_test'])
        captions = meta_data['Description'].values
        for c in string.punctuation:
            captions = map(lambda x: x.replace(c, ''), captions)
        wordtoix, ixtoword, bias_init_vector = preProBuildWordVocab(logging, captions, word_count_threshold=1)
        np.save(options['ixtoword_path'], ixtoword)
        np.save(options['wordtoix_path'], wordtoix)
        get_word_embedding(options['word_embedding_path'],options['wordtoix_path'],options['ixtoword_path'],options['word_fts_path'])
        word_emb_init = np.array(np.load(open(options['word_fts_path'])).tolist(),np.float32)
    else:
        wordtoix = (np.load(options['wordtoix_path'])).tolist()
        ixtoword = (np.load(options['ixtoword_path'])).tolist()
        word_emb_init = np.array(np.load(open(options['word_fts_path'])).tolist(),np.float32)
        train_data = get_video_data_HL(options['video_data_path_train']) # get h5 file list


    if finetune:
        start_epoch = 150
        MODEL = model_save_dir+'/model-'+str(start_epoch-1)


    model = SSAD_SCM(options,word_emb_init)
    inputs, outputs = model.build_train()
    t_loss = outputs['loss_all']
    t_loss_ssad = outputs['loss_ssad'] 
    t_loss_regular = outputs['reg_loss']
    t_positive_loss_all = outputs['positive_loss_all']
    t_hard_negative_loss_all = outputs['hard_negative_loss_all']
    t_easy_negative_loss_all = outputs['easy_negative_loss_all'] 
    t_smooth_center_loss_all = outputs['smooth_center_loss_all']
    t_smooth_width_loss_all = outputs['smooth_width_loss_all']

    t_feature_segment = inputs['feature_segment']
    t_sentence_index_placeholder = inputs['sentence_index_placeholder']
    t_sentence_w_len = inputs['sentence_w_len']
    t_gt_overlap = inputs['gt_overlap']

    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.per_process_gpu_memory_fraction = 0.3
    sess = tf.InteractiveSession(config=config)
    optimizer = optimizer_factory[options['optimizer']](**options['opt_arg'][options['optimizer']])
    if options['clip']:
        gvs = optimizer.compute_gradients(t_loss)
        capped_gvs = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gvs]
        train_op = optimizer.apply_gradients(capped_gvs)
    else:
        train_op = optimizer.minimize(t_loss)

    with tf.device("/cpu:0"):
        saver = tf.train.Saver(max_to_keep=200)
    tf.initialize_all_variables().run()

    with tf.device("/cpu:0"):
        if finetune:
            saver.restore(sess, MODEL)

    ############################################# start training ####################################################

    tStart_total = time.time()
    for epoch in range(options['max_epochs']):

        index = np.arange(len(train_data))
        np.random.shuffle(index)
        train_data = train_data[index]

        tStart_epoch = time.time()

        loss_list = np.zeros(len(train_data)) # each item in loss_epoch record the loss of this h5 file
        loss_ssad_list = np.zeros(len(train_data))
        loss_positive_loss_all_list = np.zeros(len(train_data))
        loss_hard_negative_loss_all_list = np.zeros(len(train_data))
        loss_easy_negative_loss_all_list = np.zeros(len(train_data))
        loss_smooth_center_loss_all_list = np.zeros(len(train_data))
        loss_smooth_width_loss_all_list = np.zeros(len(train_data))

        for current_batch_file_idx in xrange(len(train_data)):

            logging.info("current_batch_file_idx = {:d}".format(current_batch_file_idx))
            logging.info(train_data[current_batch_file_idx])

            tStart = time.time()
            current_batch = h5py.File(train_data[current_batch_file_idx],'r')

            # processing sentence
            current_captions_tmp = current_batch['sentence']
            current_captions = []
            for ind in range(options['batch_size']):
                current_captions.append(current_captions_tmp[ind])
            current_captions = np.array(current_captions)
            for ind in range(options['batch_size']):
                for c in string.punctuation: 
                    current_captions[ind] = current_captions[ind].replace(c,'')
            for i in range(options['batch_size']):
                current_captions[i] = current_captions[i].strip()
                if current_captions[i] == '':
                    current_captions[i] = '.'
            current_caption_ind = map(lambda cap: [wordtoix[word] for word in cap.lower().split(' ') if word in wordtoix], current_captions)
            current_caption_matrix = sequence.pad_sequences(current_caption_ind, padding='post', maxlen=options['max_sen_len'] -1)
            current_caption_matrix = np.hstack( [current_caption_matrix, np.zeros( [len(current_caption_matrix),1]) ] ).astype(int)
            current_caption_length = np.array( map(lambda x: (x != 0).sum(), current_caption_matrix )) # save the sentence length of this batch

            # processing video
            current_video_feats =  np.array(current_batch['video_source_fts'])
            current_anchor_input = np.array(current_batch['anchor_input'])
            current_ground_interval = np.array(current_batch['ground_interval'])
            current_video_name = current_batch['video_name']
            current_video_duration = np.array(current_batch['video_duration'])

            _,  loss, loss_ssad, positive_loss_all, hard_negative_loss_all, easy_negative_loss_all,\
                smooth_center_loss_all, smooth_width_loss_all, loss_regular = sess.run(
                    [train_op, t_loss, t_loss_ssad , t_positive_loss_all, t_hard_negative_loss_all, \
                     t_easy_negative_loss_all, t_smooth_center_loss_all, t_smooth_width_loss_all, t_loss_regular], \
                    feed_dict={
                        t_feature_segment: current_video_feats,
                        t_sentence_index_placeholder: current_caption_matrix,
                        t_sentence_w_len: current_caption_length,
                        t_gt_overlap: current_anchor_input
                        })


            loss_list[current_batch_file_idx] = loss
            loss_ssad_list[current_batch_file_idx] = loss_ssad
            loss_positive_loss_all_list[current_batch_file_idx] = positive_loss_all
            loss_hard_negative_loss_all_list[current_batch_file_idx] = hard_negative_loss_all
            loss_easy_negative_loss_all_list[current_batch_file_idx] = easy_negative_loss_all
            loss_smooth_center_loss_all_list[current_batch_file_idx] = smooth_center_loss_all
            loss_smooth_width_loss_all_list[current_batch_file_idx] = smooth_width_loss_all

            logging.info("loss = {:f} loss_ssad = {:f} loss_regular = {:f} positive_loss_all = {:f} hard_negative_loss_all = {:f} easy_negative_loss_all = {:f} smooth_center_loss_all = {:f} smooth_width_loss_all = {:f}".format(loss, loss_ssad, loss_regular, positive_loss_all, hard_negative_loss_all, easy_negative_loss_all, smooth_center_loss_all, smooth_width_loss_all))

           
        if finetune:
            logging.info("Epoch: {:d} done.".format(epoch+start_epoch))
        else:
            logging.info("Epoch: {:d} done.".format(epoch))
        tStop_epoch = time.time()
        logging.info('Epoch Time Cost: {:f} s'.format(round(tStop_epoch - tStart_epoch,2)))

        logging.info('Current Epoch Mean loss {:f}'.format(np.mean(loss_list)))
        logging.info('Current Epoch Mean loss_ssad {:f}'.format(np.mean(loss_ssad_list)))
        logging.info('Current Epoch Mean positive_loss_all {:f}'.format(np.mean(loss_positive_loss_all_list)))
        logging.info('Current Epoch Mean hard_negative_loss_all {:f}'.format(np.mean(loss_hard_negative_loss_all_list)))
        logging.info('Current Epoch Mean easy_negative_loss_all {:f}'.format(np.mean(loss_easy_negative_loss_all_list)))
        logging.info('Current Epoch Mean smooth_center_loss_all {:f}'.format(np.mean(loss_smooth_center_loss_all_list)))
        logging.info('Current Epoch Mean smooth_width_loss_all {:f}'.format(np.mean(loss_smooth_width_loss_all_list)))

        #################################################### test ################################################################################################
        if np.mod(epoch, 1) == 0 and  epoch >= 50:
            if finetune:
                logging.info('Epoch {:d} is done. Saving the model ...'.format(epoch+start_epoch))
            else:
                logging.info('Epoch {:d} is done. Saving the model ...'.format(epoch))
            with tf.device("/cpu:0"):
                if finetune:
                    saver.save(sess, os.path.join(model_save_dir, 'model'), global_step=epoch+start_epoch)
                else:
                    saver.save(sess, os.path.join(model_save_dir, 'model'), global_step=epoch)


    logging.info("Finally, saving the model ...")
    with tf.device("/cpu:0"):
        if finetune:
            saver.save(sess, os.path.join(model_save_dir, 'model'), global_step=epoch+start_epoch)
        else:
            saver.save(sess, os.path.join(model_save_dir, 'model'), global_step=epoch)

    tStop_total = time.time()
    logging.info("Total Time Cost: {:f} s".format(round(tStop_total - tStart_total,2)))
コード例 #4
0
def train(model, hparams, ckpt_dir, hparams_file_path, data_and_labels):
    # Data and labels.
    train_batch_data, train_batch_label, test_batch_data, test_batch_label = data_and_labels

    # Create session and save graph.
    sess = tf.InteractiveSession()
    summary_op = tf.summary.merge_all()
    summary_writer = tf.summary.FileWriter(ckpt_dir, sess.graph)

    # Restore variables, train continually or initialize all.
    saver = tf.train.Saver(tf.global_variables(), max_to_keep=None)
    ckpt = tf.train.get_checkpoint_state(ckpt_dir)
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        trained_steps = int(ckpt.model_checkpoint_path.split('-')[-1])
        # The following code is for tf.train.string_input_producer(), where define num_epochs parameter.
        # sess.run(tf.local_variables_initializer())
    else:
        sess.run(tf.global_variables_initializer())
        trained_steps = 0
        # The following code is for tf.train.string_input_producer(), where define num_epochs parameter.
        # sess.run(tf.local_variables_initializer())

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    try:
        # There, k is default to 10.
        top_k_acc = []
        for epoch in range(hparams.epoches):
            #####--PartI: Model train and test. --start--#####
            def train_one_step():
                # Feed dict, train phase.
                feed_data, feed_label = sess.run([train_batch_data, train_batch_label])
                feed_dict = {model.ph_data: feed_data, model.ph_label: feed_label,
                             model.ph_is_training: True}

                # For per summary_step, print current train acc, otherwise just train a batch_size data.
                if step % FLAGS.summary_step == 0 and step != 0:
                    op_list = [model.train_op, model.argmax_output, summary_op]
                    _, train_out_label, summaries = sess.run(op_list, feed_dict=feed_dict)

                    # Summary flush.
                    summary_writer.add_summary(summaries, global_step=global_step)
                    summary_writer.flush()

                    # predict_correct_num = tf.nn.in_top_k(np.argmax(probs, axis=1), feed_label)
                    train_std_label = np.argmax(feed_label, axis=1)
                    predict_correct_num = np.sum(train_out_label == train_std_label)
                    batch_accuracy = predict_correct_num / hparams.batch_size
                    train_acc.append(batch_accuracy)

                    # Output labels and train_acc.
                    avg_train_accuracy = np.mean(train_acc[-FLAGS.summary_step:-1])
                    print('{}\n{} | train_acc: {} {} {}'.format(train_std_label, train_out_label, batch_accuracy, avg_train_accuracy, global_step))
                else:
                    _, train_out_label = sess.run([model.train_op, model.argmax_output], feed_dict=feed_dict)
                    train_std_label = np.argmax(feed_label, axis=1)
                    predict_correct_num = np.sum(train_out_label == train_std_label)
                    batch_accuracy = predict_correct_num / hparams.batch_size
                    train_acc.append(batch_accuracy)
            def test_ckpt(current_epoch, global_step):
                start_time_test = time.time()
                test_steps = int(hparams.test_data_num / hparams.batch_size)
                sum = 0
                for test_step in range(test_steps):
                    test_feed_data, test_feed_label = sess.run([test_batch_data, test_batch_label])
                    output_label = sess.run(model.argmax_output, feed_dict={model.ph_data: test_feed_data, model.ph_is_training: False})
                    standard_label = np.argmax(test_feed_label, axis=1)
                    sum += np.sum(output_label == standard_label)

                    # Output labels and batch_accuracy.
                    if test_step % FLAGS.summary_step == 0 and test_step != 0:
                        batch_accuracy = np.sum(output_label == standard_label) / hparams.batch_size
                        print('{}\n{} | batch_acc: {}'.format(standard_label, output_label, batch_accuracy))
                test_accuracy = sum / (test_steps * hparams.batch_size)

                print('test acc:{} {}'.format(test_accuracy, global_step))
                duration = time.time() - start_time_test
                print('Test in {} epoch cost {}'.format(current_epoch, duration))
                logging.error('test acc:{} {}'.format(test_accuracy, global_step))
                return test_accuracy

            start_time_epoch = time.time()
            steps = int(hparams.train_data_num / hparams.batch_size)
            train_acc = []
            for step in range(steps):
                # Global step and global epoches.
                global_step = trained_steps + epoch * steps + step
                # current_epoch = global_step * hparams.batch_size // hparams.train_data_num

                # Train one step.
                train_one_step()

                # For per checkpoint_step, calculate and print acc in test data.
                if step % FLAGS.checkpoint_step == 0 and step != 0:
                    # Test.
                    test_accuracy = test_ckpt(epoch, global_step)
                    # Write the test_accuracy to file
                    write_test_acc(hparams_file_path, epoch, global_step, test_accuracy)

                    # Save ckpt.
                    save_ckpt_file(sess, saver, ckpt_dir, global_step, top_k_acc, test_accuracy)

            duration = time.time() - start_time_epoch
            print('The {} epoch duration: {}'.format(epoch, duration))
            #####--PartI: Model train and test. --end--#####

        #####--PartII: Video smoke_detection_win.--start--#####
        # smoke_detection_win(sess, model)
        #####--PartII: Video smoke_detection_win.--end--#####
    except Exception as e:
        logging.exception(e)
    finally:
        coord.request_stop()
        coord.join(threads)
        sess.close()
        if step % 100 == 0:
            acc = sess.run(accuracy, feed_dict={_inputs: x_batch,
                                                _labels: y_batch,
                                                _seqlens: seqlen_batch})
            print("Accuracy at %d: %.5f" % (step, acc))

    for test_batch in range(5):
        x_test, y_test, seqlen_test = get_sentence_batch(batch_size,
                                                         test_x, test_y,
                                                         test_seqlens)
        batch_pred, batch_acc = sess.run([tf.argmax(final_output, 1), accuracy],
                                         feed_dict={_inputs: x_test,
                                                    _labels: y_test,
                                                    _seqlens: seqlen_test})
        print("Test batch accuracy %d: %.5f" % (test_batch, batch_acc))

    output_example = sess.run([outputs], feed_dict={_inputs: x_test,
                                                    _labels: y_test,
                                                    _seqlens: seqlen_test})
    states_example = sess.run([states[1]], feed_dict={_inputs: x_test,
                                                      _labels: y_test,


# In[11]:


with tf.InteractiveSession() as sess:
  print( embed.eval())

コード例 #6
0
 def _init_session(self):
     self.sess = tf.InteractiveSession()
     self.sess.run(tf.global_variables_initializer())
     if self.mode == 'train':
         if self.train_initializer is not None:
             self.sess.run(self.train_initializer)
コード例 #7
0
def omniglot(load_model=False):

    sess = tf.InteractiveSession()
    saver = tf.train.Saver()

    if (load_model):
        ckpt = tf.train.get_checkpoint_state('./saved/')
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
        else:
            print("No Checkpoint found, setting load to false")
            load_model = False

    ##Global variables for Omniglot Problem
    nb_reads = 4
    controller_size = 200
    memory_shape = (128, 40)
    nb_class = 5
    input_size = 20 * 20
    batch_size = 16
    nb_samples_per_class = 10

    input_ph = tf.placeholder(
        dtype=tf.float32,
        shape=(batch_size, nb_class * nb_samples_per_class,
               input_size))  #(batch_size, time, input_dim)
    target_ph = tf.placeholder(
        dtype=tf.int32,
        shape=(batch_size, nb_class *
               nb_samples_per_class))  #(batch_size, time)(label_indices)

    #Load Data
    generator = OmniglotGenerator(data_folder='./data/omniglot',
                                  batch_size=batch_size,
                                  nb_samples=nb_class,
                                  nb_samples_per_class=nb_samples_per_class,
                                  max_rotation=0.,
                                  max_shift=0.,
                                  max_iter=None)
    output_var, output_var_flatten, params = memory_augmented_neural_network(
        input_ph,
        target_ph,
        batch_size=batch_size,
        nb_class=nb_class,
        memory_shape=memory_shape,
        controller_size=controller_size,
        input_size=input_size,
        nb_reads=nb_reads)

    print 'Compiling the Model'

    with tf.variable_scope("Weights", reuse=True):
        W_key = tf.get_variable('W_key',
                                shape=(nb_reads, controller_size,
                                       memory_shape[1]))
        b_key = tf.get_variable('b_key', shape=(nb_reads, memory_shape[1]))
        W_add = tf.get_variable('W_add',
                                shape=(nb_reads, controller_size,
                                       memory_shape[1]))
        b_add = tf.get_variable('b_add', shape=(nb_reads, memory_shape[1]))
        W_sigma = tf.get_variable('W_sigma',
                                  shape=(nb_reads, controller_size, 1))
        b_sigma = tf.get_variable('b_sigma', shape=(nb_reads, 1))
        W_xh = tf.get_variable('W_xh',
                               shape=(input_size + nb_class,
                                      4 * controller_size))
        b_h = tf.get_variable('b_xh', shape=(4 * controller_size))
        W_o = tf.get_variable('W_o',
                              shape=(controller_size +
                                     nb_reads * memory_shape[1], nb_class))
        b_o = tf.get_variable('b_o', shape=(nb_class))
        W_rh = tf.get_variable('W_rh',
                               shape=(nb_reads * memory_shape[1],
                                      4 * controller_size))
        W_hh = tf.get_variable('W_hh',
                               shape=(controller_size, 4 * controller_size))
        gamma = tf.get_variable('gamma',
                                shape=[1],
                                initializer=tf.constant_initializer(0.95))

    params = [
        W_key, b_key, W_add, b_add, W_sigma, b_sigma, W_xh, W_rh, W_hh, b_h,
        W_o, b_o
    ]

    #output_var = tf.cast(output_var, tf.int32)
    target_ph_oh = tf.one_hot(target_ph, depth=generator.nb_samples)
    print 'Output, Target shapes: ', output_var.get_shape().as_list(
    ), target_ph_oh.get_shape().as_list()
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
        logits=output_var, labels=target_ph_oh),
                          name="cost")
    opt = tf.train.AdamOptimizer(learning_rate=1e-3)
    train_step = opt.minimize(cost, var_list=params)

    #train_step = tf.train.AdamOptimizer(1e-3).minimize(cost)
    accuracies = accuracy_instance(tf.argmax(output_var, axis=2),
                                   target_ph,
                                   batch_size=generator.batch_size)
    sum_out = tf.reduce_sum(tf.reshape(
        tf.one_hot(tf.argmax(output_var, axis=2), depth=generator.nb_samples),
        (-1, generator.nb_samples)),
                            axis=0)

    print 'Done'

    tf.summary.scalar('cost', cost)
    for i in range(generator.nb_samples_per_class):
        tf.summary.scalar('accuracy-' + str(i), accuracies[i])

    merged = tf.summary.merge_all()
    #writer = tf.summary.FileWriter('/tmp/tensorflow', graph=tf.get_default_graph())
    train_writer = tf.summary.FileWriter('/tmp/tensorflow/', sess.graph)

    t0 = time.time()
    all_scores, scores, accs = [], [], np.zeros(generator.nb_samples_per_class)

    if not load_model:
        sess.run(tf.global_variables_initializer())

    print 'Training the model'

    try:
        for i, (batch_input, batch_output) in generator:
            feed_dict = {input_ph: batch_input, target_ph: batch_output}
            #print batch_input.shape, batch_output.shape
            train_step.run(feed_dict)
            score = cost.eval(feed_dict)
            acc = accuracies.eval(feed_dict)
            temp = sum_out.eval(feed_dict)
            summary = merged.eval(feed_dict)
            train_writer.add_summary(summary, i)
            print i, ' ', temp
            all_scores.append(score)
            scores.append(score)
            accs += acc
            if i > 0 and not (i % 100):
                print(accs / 100.0)
                print('Episode %05d: %.6f' % (i, np.mean(score)))
                scores, accs = [], np.zeros(generator.nb_samples_per_class)
                saver.save(sess, './saved/model.ckpt', global_step=i + 1)

    except KeyboardInterrupt:
        print time.time() - t0
        pass
コード例 #8
0
def test(batch_size, num_test, epoch_id, lstm_mod, html_type):
    #share placeholders
    keep_prob = tf.placeholder(tf.float32, name='keep_prob_placeholder')
    y = tf.placeholder(tf.float32, [
        None,
    ], name='label_placeholder')

    #image placeholders
    x = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT, IMAGE_WIDTH, 3],
                       name='image_placeholder')
    vr_type = tf.placeholder(tf.float32, [None, type_num],
                             name='type_placeholder')

    #text placeholders
    title = tf.placeholder(tf.int32, (None, None))
    title_len = tf.placeholder(tf.int32, (None))
    snippet = tf.placeholder(tf.int32, (None, None))
    snippet_len = tf.placeholder(tf.int32, (None))
    session_title = tf.placeholder(tf.int32, (None, None))
    sess_len_title = tf.placeholder(tf.int32, (None))
    session_snippet = tf.placeholder(tf.int32, (None, None))
    sess_len_snippet = tf.placeholder(tf.int32, (None))
    sessions_weight_snippet = tf.placeholder(
        tf.float32, [None, sess_sen_len_snippet, feature_dim])
    attention_title = tf.placeholder(tf.float32,
                                     [None, max_title_len_top, feature_dim])
    attention_snippet = tf.placeholder(
        tf.float32, [None, max_snippet_len_top, feature_dim])

    #html placeholders
    html_tag = tf.placeholder(tf.int32, [None, html_dim],
                              name='tag_placeholder')
    html_class = tf.placeholder(tf.int32, [None, html_dim],
                                name='class_placeholder')

    #with tf.name_scope('image'):
    image_placeholders = [x, vr_type, keep_prob]
    pred_image = image(image_placeholders)

    #with tf.name_scope('title'):
    title_placeholders = [
        title, title_len, attention_title, session_title, sess_len_title
    ]
    pred_title = text(title_placeholders, 'title')

    #with tf.name_scope('snippet'):
    snippet_placeholders = [
        snippet, snippet_len, attention_snippet, session_snippet,
        sess_len_snippet, sessions_weight_snippet
    ]
    pred_snippet = text(snippet_placeholders, 'snippet')

    #with tf.name_scope('html'):
    html_placeholders = [html_tag, html_class]
    pred_html = html(html_placeholders)

    pred_combine = tf.squeeze(
        tf.concat([pred_image, pred_title, pred_snippet, pred_html], 1))
    balance_raw = tf.Variable(tf.ones([4]), name='balance', trainable=True)
    balance_sum = tf.reduce_sum(balance_raw)
    balance = tf.div(balance_raw, balance_sum)
    pred_final = tf.reduce_sum(tf.multiply(pred_combine, balance), 1)

    with tf.name_scope("loss"):
        sigmoid_cross_entropy = cross_entropy(labels=tf.squeeze(y),
                                              logits=pred_final)
        loss_cross_entropy = tf.reduce_mean(sigmoid_cross_entropy,
                                            name='loss_cross_entropy')
        loss_mse = tf.reduce_mean(tf.square(pred_final - tf.squeeze(y)))

        loss = loss_mse

    sess = tf.InteractiveSession()
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.restore(
        sess,
        model_base + 'checkpoint/JRE/model_JRE_epoch_' + epoch_id + '.ckpt')

    test_dataset = '201709'
    tvt_file = data_base + '201709/info_top_10_id_201709'
    images_test, rels_test, num_data_test = set_data_image(
        tvt_file, test_dataset)
    type_test = set_data_type(tvt_file)
    titles_test, snippets_test, rels_test, queries_test, num_data_test = set_data_text(
        'text', tvt_file)
    sess_title_test, sessions_weight_title_test = set_data_sess(
        'title', tvt_file, test_dataset)
    sess_snippet_test, sessions_weight_snippet_test = set_data_sess(
        'snippet', tvt_file, test_dataset)
    DFS_tag_test, DFS_class_test, BFS_tag_test, BFS_class_test, rels_test, num_data_test = set_data_html(
        tvt_file, test_dataset)
    print('test data num:{}'.format(num_data_test))

    if num_test == 'all':
        num_test = num_data_test
    else:
        num_test = int(num_test)

    dropout_rate_test = 1
    print("{} Start testing...".format(datetime.now()))
    loss_total = 0.
    pred_all, pred_combine_all, label_all = [], [], []
    iters = num_test / batch_size
    print('Start......')
    start = time.time()
    for iter in xrange(iters):
        ind = set_random_ind(num_data_test,
                             batch_size,
                             random=False,
                             iter_=iter)
        pic_input, label_input = data_batch_image(images_test, rels_test,
                                                  num_data_test, batch_size,
                                                  ind)
        type_input = data_batch_type(type_test, batch_size, ind)
        title_input, title_len_input, label_input, attention_title_input = data_batch_text(
            titles_test, queries_test, window_weight, rels_test, num_data_test,
            batch_size, max_title_len_top, ind)
        snippet_input, snippet_len_input, label_input, attention_snippet_input = data_batch_text(
            snippets_test, queries_test, window_weight, rels_test,
            num_data_test, batch_size, max_snippet_len_top, ind)
        sess_title_input, sess_title_len_input, label_input, attention_sess_title_input = data_batch_text(
            sess_title_test, queries_test, window_weight, rels_test,
            num_data_test, batch_size, sess_sen_len_title, ind)
        sess_snippet_input, sess_snippet_len_input, label_input, attention_sess_snippet_input = data_batch_text(
            sess_snippet_test, queries_test, window_weight, rels_test,
            num_data_test, batch_size, sess_sen_len_snippet, ind)
        sessions_weight_snippet_input = sess_weight_batch(
            'snippet', batch_size, sessions_weight_snippet_test, ind)

        if html_type == 'DFS':
            tag_input, label_input = data_batch_html(DFS_tag_test, rels_test,
                                                     ind)
            class_input, label_input = data_batch_html(DFS_class_test,
                                                       rels_test, ind)
        elif html_type == 'BFS':
            tag_input, label_input = data_batch_html(BFS_tag_test, rels_test,
                                                     ind)
            class_input, label_input = data_batch_html(BFS_class_test,
                                                       rels_test, ind)
        pred_final_, pred_combine_, loss_, loss_cross_entropy_, loss_mse_, balance_ = sess.run(
            [
                pred_final, pred_combine, loss, loss_cross_entropy, loss_mse,
                balance
            ],
            feed_dict={
                y: label_input,
                keep_prob: dropout_rate,
                x: pic_input,
                vr_type: type_input,
                title: title_input,
                title_len: title_len_input,
                session_title: sess_title_input,
                sess_len_title: sess_title_len_input,
                attention_title: attention_title_input,
                snippet: snippet_input,
                snippet_len: snippet_len_input,
                session_snippet: sess_snippet_input,
                sess_len_snippet: sess_snippet_len_input,
                sessions_weight_snippet: sessions_weight_snippet_input,
                attention_snippet: attention_snippet_input,
                html_tag: tag_input,
                html_class: class_input
            })

        loss_total += loss_ * batch_size
        pred_all.append(pred_final_)
        pred_combine_all.append(pred_combine_)
        label_all.append(label_input)

    end = time.time()
    print('Total Time:{}'.format(end - start))

    print('average loss: {}'.format(loss_total * 1.0 / iters / batch_size))
    pred_all = np.squeeze(np.concatenate((np.array(pred_all)), axis=0))
    label_all = np.squeeze(np.concatenate((np.array(label_all)), axis=0))

    fusion_file = open(
        result_base + 'JRE_' + test_dataset + '_' + epoch_id + '.txt', 'w')
    for i in range(iters * batch_size):
        fusion_file.write(images_test[i].split('/')[-1] + '\t' +
                          str(label_all[i]) + '\t' + str(pred_all[i]) + '\n')
コード例 #9
0
X_train = data_train[:, 1:]
y_train = data_train[:, 0]
X_test = data_test[:, 1:]
y_test = data_test[:, 0]

# Number of stocks in training data
n_stocks = X_train.shape[1]

# Neurons
n_neurons_1 = 1024
n_neurons_2 = 512
n_neurons_3 = 256
n_neurons_4 = 128

# Session
net = tf.InteractiveSession()

# Placeholder
X = tf.placeholder(dtype=tf.float32, shape=[None, n_stocks])
Y = tf.placeholder(dtype=tf.float32, shape=[None])

# Initializers
sigma = 1
weight_initializer = tf.variance_scaling_initializer(mode="fan_avg", distribution="uniform", scale=sigma)
bias_initializer = tf.zeros_initializer()

# Hidden weights
W_hidden_1 = tf.Variable(weight_initializer([n_stocks, n_neurons_1]))
bias_hidden_1 = tf.Variable(bias_initializer([n_neurons_1]))
W_hidden_2 = tf.Variable(weight_initializer([n_neurons_1, n_neurons_2]))
bias_hidden_2 = tf.Variable(bias_initializer([n_neurons_2]))
コード例 #10
0
def main(_):
    with tf.device('/gpu:0'):
        # Input
        x = tf.placeholder(tf.float32, [None, model.time_step, model.num_input])
        y_ = tf.placeholder(tf.float32, [None, model.num_class])

        # Create lstm model
        y_lstm, keep_prob = model.lstm(x)

        # Define loss
        with tf.name_scope('loss'):
            cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y_lstm)
        cross_entropy = tf.reduce_mean(cross_entropy)

        # Define optimizer
        with tf.name_scope('adam_optimizer'):
            train_step = tf.train.AdamOptimizer(learn_rate).minimize(cross_entropy)

        # Create the node to calculate ccc
        with tf.name_scope('accuracy'):
            correct_prediction = tf.equal(tf.argmax(y_lstm, 1), tf.argmax(y_, 1))
            correct_prediction = tf.cast(correct_prediction, tf.float32)
        accuracy = tf.reduce_mean(correct_prediction)

        # Create the node to calculate auc
        with tf.name_scope('auc'):
            labels = tf.reshape(tf.slice(tf.cast(y_, dtype=tf.bool), [0, 0], [-1, 1]), [-1])
            predictions = tf.reshape(
                tf.subtract(tf.slice(y_lstm, [0, 0], [-1, 1]), tf.slice(y_lstm, [0, 1], [-1, 1])),
                [-1])

            # Min Max Normalization
            Y_pred = (predictions - tf.reduce_min(predictions)) / (
                    tf.reduce_max(predictions) - tf.reduce_min(predictions))
            roc_auc, roc_auc_update_op = tf.metrics.auc(labels, Y_pred, curve='ROC', name='roc')

        # Create the node to calculate acc
        with tf.name_scope('metrics'):
            acc, acc_op = tf.metrics.accuracy(tf.argmax(y_, 1), tf.argmax(y_lstm, 1))
            rec, rec_op = tf.metrics.recall(tf.argmax(y_, 1), tf.argmax(y_lstm, 1))

            all_pos = tf.reduce_sum(tf.argmin(y_lstm, 1))
            all_neg = tf.reduce_sum(tf.argmax(y_lstm, 1))
            fn, fn_op = tf.metrics.false_negatives(tf.argmax(y_, 1), tf.argmax(y_lstm, 1))
            fp, fp_op = tf.metrics.false_positives(tf.argmax(y_, 1), tf.argmax(y_lstm, 1))

        # Add ops to save and restore all the variables
        saver = tf.train.Saver()
        sess = tf.InteractiveSession()

        with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
            for seed in range(1, seeds_num + 1):
                print('*' * 30, 'seed=', seed, '*' * 30)
                sess.run(tf.global_variables_initializer())
                sess.run(tf.local_variables_initializer())

                summary_writer = tf.summary.FileWriter(LOGS_DIRECTORY, graph=tf.get_default_graph())

                sum_acc = 0
                sum_auc = 0
                sum_spec = 0
                sum_recall = 0
                record_fn = 0
                record_fp = 0
                training_accuracy_list = []

                all_piRNA = input_data.read_all(TRAIN_IMAGES, TRAIN_LABELS,
                                                test_size=test_size, seed=seed, is_display=is_display)
                test_accuracy_list = []
                for fold in range(10):

                    print('fold %d:' % fold)
                    piRNA = input_data.read_CV_datasets(fold, int(DATA_NUM * (1 - test_size)), all_piRNA)

                    for i in range(TOTAL_BATCH):
                        batch_x, batch_y = piRNA.train.next_batch(batch_size)
                        batch_x = batch_x.reshape(batch_size, model.time_step, model.num_input)

                        step, training_accuracy = sess.run([train_step, accuracy],
                                                           feed_dict={x: batch_x, y_: batch_y, keep_prob: 0.5})

                        # print out results
                        if i % 50 == 0:
                            print('step %d, training accuracy %g' % (i, training_accuracy))
                            training_accuracy_list.append(training_accuracy)
                        if i % 1000 == 0:
                            print('test accuracy %g' % accuracy.eval(
                                feed_dict={x: piRNA.test.images.reshape(-1, model.time_step, model.num_input),
                                           y_: piRNA.test.labels, keep_prob: 1.0}))

                    auc, acc, recall, pred_neg, false_nega, false_posi, pred_pos = sess.run(
                        [roc_auc_update_op, acc_op, rec_op, all_neg, fn_op, fp_op, all_pos],
                        feed_dict={x: piRNA.validation.images.reshape(-1, model.time_step, model.num_input),
                                   y_: piRNA.validation.labels, keep_prob: 1.0})

                    # update specificity
                    current_fn = false_nega - record_fn
                    current_fp = false_posi - record_fp
                    true_nega = pred_neg - current_fn  # fp_op accumulate every loop
                    spec = true_nega / (true_nega + current_fp)
                    record_fn = false_nega
                    record_fp = false_posi

                    test_accuracy = accuracy.eval(
                        feed_dict={x: piRNA.test.images.reshape(-1, model.time_step, model.num_input),
                                   y_: piRNA.test.labels, keep_prob: 1.0})
                    test_accuracy_list.append(test_accuracy)

                    # Test Set
                    print('Test set accuracy %g' % test_accuracy)

                    # 10-CV metrices (acc, auc)
                    sum_acc = cv.acc(sum_acc, acc, fold, is_display=is_display)
                    sum_auc = cv.auc(sum_auc, auc, fold, is_display=is_display)
                    sum_spec = cv.spec(sum_spec, spec, fold, is_display=is_display)
                    sum_recall = cv.recall(sum_recall, recall, fold, is_display=is_display)
                test_accuracy_average = cv.average(test_accuracy_list)
                auc_average = cv.average(cv.auc_list)
                acc_average = cv.average(cv.acc_list)
                spec_average = cv.average(cv.spec_list)
                recall_average = cv.average(cv.recall_list)
                acc_list.append(acc_average)
                auc_list.append(auc_average)
                spec_list.append(spec_average)
                recall_list.append(recall_average)
                test_acc_list.append(test_accuracy_average)
                if is_display:
                    print('*** Test accuracy is:', test_accuracy_list)
                    print('*** The average test accuracy is:%.3f' % test_accuracy_average)
                    print('acc', acc_average)
                    print('auc', auc_average)
                    print('spec', spec_average)
                    print('recall', recall_average)
    data_frame = pd.DataFrame(
        {'AUC': auc_list, 'ACC': acc_list, 'SP': spec_list, 'SN': recall_list, 'Test ACC': test_acc_list})
    data_frame.to_csv('drosophila1vs1.csv', index=True, columns=['AUC', 'ACC', 'SP', 'SN', 'Test ACC'])
コード例 #11
0
ファイル: new_demo.py プロジェクト: loujt1984/InceptionV3-SSD
# slim = tf.contrib.slim

sys.path.append('../')

from pathlib import Path

from preprocessing import ssd_vgg_preprocessing
from utils import visualization
from ssd.ssdmodel import SSDModel
import utils.np_methods as np_methods

# TensorFlow session: grow memory when needed. TF, DO NOT USE ALL MY GPU MEMORY!!!
gpu_options = tf.GPUOptions(allow_growth=True)
config = tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options)
isess = tf.InteractiveSession(config=config)

# Input placeholder.
net_shape = (512, 512)
data_format = 'NHWC'
img_input = tf.placeholder(tf.uint8, shape=(None, None, 3))
# Evaluation pre-processing: resize to SSD net shape.
image_pre, labels_pre, bboxes_pre, bbox_img = ssd_vgg_preprocessing.preprocess_for_eval(
    img_input, None, None, net_shape, data_format, resize=ssd_vgg_preprocessing.Resize.WARP_RESIZE)
image_4d = tf.expand_dims(image_pre, 0)

# Define the SSD model.
g_ssd_model = SSDModel('inception_v3', 'ssd512', weight_decay=0.0005)
predictions, localisations, _, _ = g_ssd_model.get_model(image_4d)

# Restore SSD model.
コード例 #12
0
def main(*args):
  # Train model
  print('Training model...')
  mnist = input_data.read_data_sets(FLAGS.data_url, one_hot=True)
  sess = tf.InteractiveSession()
  serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
  feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32),}#手写体的图片大小28*28,总共784个像素,每一个像素都是特征值,采用浮点型表示
  tf_example = tf.parse_example(serialized_tf_example, feature_configs)

  #构建训练模型
  x = tf.identity(tf_example['x'], name='x')#定义输入特征值,也就是列长度为784的张量x
  y_ = tf.placeholder('float', shape=[None, 10])#定义标签值为浮点型,长度为10的one-hot向量,n行10列,n取决于训练的样本数量


  w = tf.Variable(tf.zeros([784, 10])) #定义权重参数,因为后面要用到矩阵运算,用x张量乘以w张量,x的列数784要与w的行数相同,所以w是784行、10列的张量,10代表有10个分类
  b = tf.Variable(tf.zeros([10]))#定义值参数  
  
  #计算预测值:输入值X与权重w相乘,再加上偏置值b,得到预测值
  prediction=tf.matmul(x,w)+b
  #采用softmax函数激活输出预测值y
  y = tf.nn.softmax(prediction)

  #将原有的代价函数改为交叉熵代价函数
  #cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
  cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_,logits=y))   

  tf.summary.scalar('cross_entropy', cross_entropy)
  #定义学习率
  learning_rate = 0.01
  #使用梯度下降法找到最小代价损失
  #train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)
  train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
  
  #初始化全局变量
  sess.run(tf.global_variables_initializer()) 

  #将计算结果存放在一个bool列表中
  correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) #argmax:返回一维张量中最大的值所在的位置,如果位置相等代表预测正确
  #计算精确率
  #tf.cast是把bool型数组转化为float型,True转化为1.0, False转化为0.0.reduce_mean时求float型数组的平均值,即正确的个数与所有个数之比.这个数越大越精准
  accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) #例如correct_prediction:[true,true,true,true,flase]=>[1,1,1,1,0]=>4/5=>80%
  tf.summary.scalar('accuracy', accuracy)
  merged = tf.summary.merge_all()
  test_writer = tf.summary.FileWriter(FLAGS.train_url, flush_secs=1)

  #开启训练模式,先训练个1000次
  for step in range(FLAGS.max_steps):
    batch = mnist.train.next_batch(50)#随机读取50个训练样本
    train_step.run(feed_dict={x: batch[0], y_: batch[1]})#把x和y_喂进去,走起
    if step % 10 == 0:
      summary, acc = sess.run([merged, accuracy], feed_dict={x: mnist.test.images, y_: mnist.test.labels})#使用测试集数据评估准确率
      test_writer.add_summary(summary, step)
      #print('training accuracy is:', acc)
      print("迭代次数:"+str(step)+",准确率(accuracy):"+str(acc))

  print('Done training!')

  #保存模型
  builder = tf.saved_model.builder.SavedModelBuilder(os.path.join(FLAGS.train_url, 'model'))

  tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
  tensor_info_y = tf.saved_model.utils.build_tensor_info(y)

  prediction_signature = (
      tf.saved_model.signature_def_utils.build_signature_def(
          inputs={'images': tensor_info_x},
          outputs={'scores': tensor_info_y},
          method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))

  builder.add_meta_graph_and_variables(
      sess, [tf.saved_model.tag_constants.SERVING],
      signature_def_map={
          'predict_images':
              prediction_signature,
      },
      main_op=tf.tables_initializer(),
      strip_default_attrs=True)

  builder.save()

  print('Done exporting!')
コード例 #13
0
ファイル: run_charades_scm.py プロジェクト: zhzhuangxue/SCDM
def test(model_save_dir, result_save_dir):

    all_anchor_list = generate_all_anchor()

    # meta_data, train_data, test_data, val_data = get_video_data_jukin(options['video_data_path_train'], options['video_data_path_test'], options['video_data_path_val'])
    # wordtoix = (np.load(options['wordtoix_path'])).tolist()
    # word_emb_init = np.array(np.load(open(options['word_fts_path'])).tolist(),np.float32)

    wordtoix = (np.load(options['wordtoix_path'])).tolist()
    ixtoword = (np.load(options['ixtoword_path'])).tolist()
    word_emb_init = np.array(np.load(open(options['word_fts_path'])).tolist(),np.float32)
    train_data = get_video_data_HL(options['video_data_path_train']) # get h5 file list
    test_data = get_video_data_HL(options['video_data_path_test'])

    model = SSAD_SCM(options,word_emb_init)
    inputs,t_predict_overlap,t_predict_reg = model.build_proposal_inference()
    t_feature_segment = inputs['feature_segment']
    t_sentence_index_placeholder = inputs['sentence_index_placeholder']
    t_sentence_w_len = inputs['sentence_w_len']

    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.per_process_gpu_memory_fraction = 0.3
    sess = tf.InteractiveSession(config=config)
    with tf.device("/cpu:0"):
        saver = tf.train.Saver(max_to_keep=200)
        latest_checkpoint = tf.train.latest_checkpoint(model_save_dir)
        tmp = latest_checkpoint.split('model-')
        all_epoch = int(tmp[1])


    for epoch in range(all_epoch+1):

        epoch_add = 50
        epoch_exact = epoch + epoch_add

        if os.path.exists(result_save_dir+'/'+str(epoch_exact)+'.pkl'):
            continue
        with tf.device("/cpu:0"):
            saver.restore(sess, tmp[0]+'model-'+str(epoch_exact))

        result = []
        for current_batch_file_idx in xrange(len(test_data)):

            print current_batch_file_idx
            current_batch = h5py.File(test_data[current_batch_file_idx],'r')
            # processing sentence
            current_captions_tmp = current_batch['sentence']
            current_captions = []
            for ind in range(options['batch_size']):
                current_captions.append(current_captions_tmp[ind])
            current_captions = np.array(current_captions)
            for ind in range(options['batch_size']):
                for c in string.punctuation: 
                    current_captions[ind] = current_captions[ind].replace(c,'')
            for i in range(options['batch_size']):
                current_captions[i] = current_captions[i].strip()
                if current_captions[i] == '':
                    current_captions[i] = '.'
            current_caption_ind = map(lambda cap: [wordtoix[word] for word in cap.lower().split(' ') if word in wordtoix], current_captions)
            current_caption_matrix = sequence.pad_sequences(current_caption_ind, padding='post', maxlen=options['max_sen_len']-1)
            current_caption_matrix = np.hstack( [current_caption_matrix, np.zeros( [len(current_caption_matrix),1]) ] ).astype(int)
            current_caption_length = np.array( map(lambda x: (x != 0).sum(), current_caption_matrix )) # save the sentence length of this batch

            # processing video
            current_video_feats =  np.array(current_batch['video_source_fts'])
            current_anchor_input = np.array(current_batch['anchor_input'])
            current_ground_interval = np.array(current_batch['ground_interval'])
            current_video_name = current_batch['video_name']
            current_video_duration = np.array(current_batch['video_duration'])

            predict_overlap, predict_reg= sess.run(
                    [t_predict_overlap, t_predict_reg],
                    feed_dict={
                        t_feature_segment: current_video_feats,
                        t_sentence_index_placeholder: current_caption_matrix,
                        t_sentence_w_len: current_caption_length
                        })

            for batch_id in range(options['batch_size']):
                predict_overlap_list = []
                predict_center_list = []
                predict_width_list = []
                expand_anchor_list = []
                for anchor_group_id in range(len(options['feature_map_len'])):
                    for anchor_id in range(options['feature_map_len'][anchor_group_id]):
                        for kk in range(4):
                            predict_overlap_list.append(predict_overlap[anchor_group_id][batch_id,0,anchor_id,kk])
                            predict_center_list.append(predict_reg[anchor_group_id][batch_id,0,anchor_id,kk*2])
                            predict_width_list.append(predict_reg[anchor_group_id][batch_id,0,anchor_id,kk*2+1])
                            expand_anchor_list.append(all_anchor_list[anchor_group_id][anchor_id][kk])


                a_left = []
                a_right = []
                a_score = []
                for index in range(len(predict_overlap_list)):
                    anchor = expand_anchor_list[index]
                    anchor_center = (anchor[1] - anchor[0]) * 0.5 + anchor[0]
                    anchor_width = anchor[1] - anchor[0]
                    center_offset = predict_center_list[index]
                    width_offset = predict_width_list[index]
                    p_center = anchor_center+0.1*anchor_width*center_offset
                    p_width =anchor_width*np.exp(0.1*width_offset)
                    p_left = max(0, p_center-p_width*0.5)
                    p_right = min(options['sample_len'], p_center+p_width*0.5)
                    if p_right - p_left < 1.0:
                        continue
                    if p_right - p_left > current_batch['video_duration'][batch_id]:
                        continue
                    a_left.append(p_left)
                    a_right.append(p_right)
                    a_score.append(predict_overlap_list[index])
                picks = nms_temporal(a_left,a_right,a_score,0.7)
                process_segment = []
                process_score = []
                for pick in picks:
                    process_segment.append([a_left[pick],a_right[pick]])
                    process_score.append(a_score[pick])

                result.append([current_batch['video_name'][batch_id],\
                               current_batch['ground_interval'][batch_id],\
                               current_batch['sentence'][batch_id],\
                               process_segment,\
                               current_batch['video_duration'][batch_id],\
                               process_score,\
                               predict_overlap_list,\
                               predict_center_list,\
                               predict_width_list]
                               )


        pkl.dump(result,open(result_save_dir+'/'+str(epoch_exact)+'.pkl','wb'))
        logging.info('***************************************************************')
        analysis_iou(result,epoch_exact,logging)
        logging.info('***************************************************************')
コード例 #14
0
def train_graph(game, player, display_on, inp, out, trained_steps):

    # define variables
    argmax = tf.placeholder("float", [None, ACTIONS]) 
    ground_truth = tf.placeholder("float", [None])
    global_step = tf.Variable(0, name='global_step')

    action = tf.reduce_sum(tf.multiply(out, argmax), reduction_indices = 1)
    cost = tf.reduce_mean(tf.square(action - ground_truth))

    train_step = tf.train.AdamOptimizer(1e-6).minimize(cost)
    
    replay_memory = deque()

    # get, intial frame from 'Pong', process image, and stack frames
    frame = game.get_initial_frame(display_on)
    frame = cv2.cvtColor(cv2.resize(frame, (60, 60)), cv2.COLOR_BGR2GRAY)
    _, frame = cv2.threshold(frame, 1, 255, cv2.THRESH_BINARY)
    inp_t = np.stack((frame, frame, frame, frame), axis = 2)

    # saver and session manager
    saver = tf.train.Saver(tf.global_variables(), max_to_keep=None)    
    session = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=True))
    checkpoint_path = "./checkpoint_" + trained_steps
    checkpoint = tf.train.latest_checkpoint(checkpoint_path)
    if checkpoint != None:
        saver.restore(session, checkpoint)
    else:
        init = tf.global_variables_initializer()
        session.run(init)

    t = global_step.eval()   
    c = 0
    
    epsilon = INITIAL_EPSILON

    avg_max_q = 0
    
    # main training loop
    while(1):
        out_t = out.eval(feed_dict = {inp : [inp_t]})[0] # output tensor
        argmax_t = np.zeros([ACTIONS]) # argmax tensor
        reward_t = 0 # reward tensor

        # choose action to take (random if epsilon)
        if(random.random() <= epsilon and not USE_MODEL):
            maxIndex = choice((0,1,2), 1, p=(0.9, 0.05, 0.05)) # make 0 the most choosen action for realistic randomness
        else:
            maxIndex = np.argmax(out_t)

        # set action to take
        argmax_t[maxIndex] = 1
        
        # anneal epsilon according to cooling schedule
        if epsilon > FINAL_EPSILON:
            epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORE_STEPS

        # get next frame (state) and reward from the resulting state
        if player == 1:
            reward_t, _, frame = game.get_next_frame(argmax_t, None, display_on)
        elif player == 2:
            _, reward_t, frame = game.get_next_frame(None, argmax_t, display_on)

        # process state
        frame = cv2.cvtColor(cv2.resize(frame, (60, 60)), cv2.COLOR_BGR2GRAY)
        _, frame = cv2.threshold(frame, 1, 255, cv2.THRESH_BINARY)
        frame = np.reshape(frame, (60, 60, 1))
        
        updated_inp_t = np.append(frame, inp_t[:, :, 0:3], axis = 2) # updated input tensor
        
        # add our input, argmax, reward, and updated input tensors to replay memory
        replay_memory.append((inp_t, argmax_t, reward_t, updated_inp_t))

        # if we run out of replay memory, make room
        if len(replay_memory) > REPLAY_MEMORY_SIZE:
            replay_memory.popleft()
        
        # training update iteration
        if c > OBSERVE_STEPS and not USE_MODEL:

            # get values from our replay memory
            minibatch = random.sample(replay_memory, BATCH)
        
            inp_batch = [dim[0] for dim in minibatch]
            argmax_batch = [dim[1] for dim in minibatch]
            reward_batch = [dim[2] for dim in minibatch]
            updated_inp_t_batch = [dim[3] for dim in minibatch]
        
            ground_truth_batch = []

            out_batch = out.eval(feed_dict = {inp : updated_inp_t_batch})
            
            # add values to the batch
            for i in range(0, len(minibatch)):
                ground_truth_batch.append(reward_batch[i] + GAMMA * np.max(out_batch[i]))

            # train the model
            train_step.run(feed_dict = {ground_truth : ground_truth_batch,
                                        argmax : argmax_batch,
                                        inp : inp_batch})
        
        # next frame
        inp_t = updated_inp_t
        t = t + 1   
        c = c + 1     

        # save model at set intervals
        if t % SAVE_STEP == 0 and not USE_MODEL:
            session.run(global_step.assign(t))            
            saver.save(session, './checkpoints/model.ckpt', global_step=t)    
コード例 #15
0
	def init_session(self):
		config = tf.ConfigProto()
		config.gpu_options.allow_growth = False

		print("Session and graph initialized.")
		self.sess = tf.InteractiveSession(config=config, graph=tf.Graph())
コード例 #16
0
def train(batch_size, num_epochs, num_train, num_val, alpha_regularizer,
          lstm_mode, html_type):
    display_step = 10
    filewriter_path = model_base + "tensorboard/"
    checkpoint_path = model_base + "checkpoint/"
    if os.path.exists(filewriter_path):
        shutil.rmtree(filewriter_path)
    os.makedirs(filewriter_path)
    if not os.path.isdir(checkpoint_path): os.makedirs(checkpoint_path)

    #share placeholders
    keep_prob = tf.placeholder(tf.float32, name='keep_prob_placeholder')
    y = tf.placeholder(tf.float32, [
        None,
    ], name='label_placeholder')

    #image placeholders
    x = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT, IMAGE_WIDTH, 3],
                       name='image_placeholder')
    vr_type = tf.placeholder(tf.float32, [None, type_num],
                             name='type_placeholder')

    #text placeholders
    title = tf.placeholder(tf.int32, (None, None))
    title_len = tf.placeholder(tf.int32, (None))
    snippet = tf.placeholder(tf.int32, (None, None))
    snippet_len = tf.placeholder(tf.int32, (None))
    session_title = tf.placeholder(tf.int32, (None, None))
    sess_len_title = tf.placeholder(tf.int32, (None))
    session_snippet = tf.placeholder(tf.int32, (None, None))
    sess_len_snippet = tf.placeholder(tf.int32, (None))
    sessions_weight_snippet = tf.placeholder(
        tf.float32, [None, sess_sen_len_snippet, feature_dim])
    attention_title = tf.placeholder(tf.float32,
                                     [None, max_title_len_top, feature_dim])
    attention_snippet = tf.placeholder(
        tf.float32, [None, max_snippet_len_top, feature_dim])

    #html placeholders
    html_tag = tf.placeholder(tf.int32, [None, html_dim],
                              name='tag_placeholder')
    html_class = tf.placeholder(tf.int32, [None, html_dim],
                                name='class_placeholder')

    #with tf.name_scope('image'):
    image_placeholders = [x, vr_type, keep_prob]
    pred_image = image(image_placeholders)

    #with tf.name_scope('title'):
    title_placeholders = [
        title, title_len, attention_title, session_title, sess_len_title
    ]
    pred_title = text(title_placeholders, 'title')

    #with tf.name_scope('snippet'):
    snippet_placeholders = [
        snippet, snippet_len, attention_snippet, session_snippet,
        sess_len_snippet, sessions_weight_snippet
    ]
    pred_snippet = text(snippet_placeholders, 'snippet')

    #with tf.name_scope('html'):
    html_placeholders = [html_tag, html_class]
    pred_html = html(html_placeholders)

    #fusion
    pred_combine = tf.squeeze(
        tf.concat([pred_image, pred_title, pred_snippet, pred_html], 1))
    balance_raw = tf.Variable(tf.ones([4]), name='balance', trainable=True)
    #without XPN
    #pred_combine = tf.squeeze(tf.concat([pred_image, pred_title, pred_html], 1))
    #balance_raw = tf.Variable(tf.ones([3]), name='balance', trainable=True)

    balance_sum = tf.reduce_sum(balance_raw)
    balance = tf.div(balance_raw, balance_sum)

    pred_final = tf.reduce_sum(tf.multiply(pred_combine, balance), 1)

    with tf.name_scope("loss"):
        regularizer = tf.contrib.layers.l2_regularizer(alpha_regularizer)
        loss_regularizer = tf.contrib.layers.apply_regularization(
            regularizer, tf.trainable_variables())

        #sigmoid_cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels = tf.squeeze(y), logits = pred_final)
        sigmoid_cross_entropy = cross_entropy(labels=tf.squeeze(y),
                                              logits=pred_final)
        loss_cross_entropy = tf.reduce_mean(sigmoid_cross_entropy,
                                            name='loss_cross_entropy')
        loss_mse = tf.reduce_mean(tf.square(pred_final - tf.squeeze(y)))

        loss = loss_cross_entropy

    print('Get ready! We are going to print all the trainable vars.')
    var_list = [v for v in tf.trainable_variables()]
    for var in var_list:
        print(var.name)
    print('Ok, print done.')

    var_train_list = var_list
    with tf.name_scope("train"):
        gradients = tf.gradients(loss, var_train_list)
        #gradients, global_norm = tf.clip_by_global_norm(gradients, 1)
        gradients = list(zip(gradients, var_train_list))
        #optimizer = tf.train.GradientDescentOptimizer(learning_rate)
        optimizer = tf.train.AdamOptimizer(learning_rate)
        train_op = optimizer.apply_gradients(grads_and_vars=gradients)
        #train_op = optimizer.minimize(loss)

    for var in var_list:
        tf.summary.histogram(var.name, var)
    tf.summary.scalar('loss_regularizer_fusion', loss_regularizer)
    tf.summary.scalar('loss_cross_entropy_fusion', loss_cross_entropy)
    tf.summary.scalar('loss_mse_fusion', loss_mse)
    tf.summary.scalar('loss_fusion', loss)
    merged_summary = tf.summary.merge_all()
    writer = tf.summary.FileWriter(filewriter_path)

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.InteractiveSession(config=config)
    sess.run(tf.global_variables_initializer())
    writer.add_graph(sess.graph)
    images_vals, title_vars, snippet_vars, html_vars = [], [], [], []
    for var in var_list:
        if var.name.find("title") != -1:
            print('title:  ' + var.name)
            title_vars.append(var)
        elif var.name.find("snippet") != -1:
            print('snippet:  ' + var.name)
            snippet_vars.append(var)
        elif var.name.find('html') != -1:
            print('html:  ' + var.name)
            html_vars.append(var)
        elif var.name.find("balance") == -1:
            print('image:  ' + var.name)
            images_vals.append(var)

    # saver_image = tf.train.Saver(images_vals)
    # saver_title = tf.train.Saver(title_vars)
    # saver_snippet = tf.train.Saver(snippet_vars)
    # saver_html = tf.train.Saver(html_vars)
    # saver_image.restore(sess, model_base+"checkpoint/VPN/model_image.ckpt")
    # print('image model successfully loaded!')
    # saver_title.restore(sess, model_base+"checkpoint/TSN/model_title.ckpt")
    # print('title model successfully loaded!')
    # saver_snippet.restore(sess, model_base+"checkpoint/SSN/model_snippet.ckpt")
    # print('snippet model successfully loaded!')
    # saver_html.restore(sess, model_base+'checkpoint/HSN/model_html.ckpt')
    # print('html model successfully loaded!')
    saver = tf.train.Saver(max_to_keep=20)

    train_dataset = val_dataset = '201709'
    train_path = data_base + '201709/info_top_10_id_201709'
    val_path = data_base + '201709/info_top_10_id_201709'
    images_train, rels_train, num_data_train = set_data_image(
        train_path, train_dataset)
    images_val, rels_val, num_data_val = set_data_image(val_path, val_dataset)
    type_train = set_data_type(train_path)
    type_val = set_data_type(val_path)
    titles_train, snippets_train, rels_train, queries_train, num_data_train = set_data_text(
        'text', train_path)
    titles_val, snippets_val, rels_val, queries_val, num_data_val = set_data_text(
        'text', val_path)
    sess_title_train, sessions_weight_title_train = set_data_sess(
        'title', train_path, train_dataset)
    sess_snippet_train, sessions_weight_snippet_train = set_data_sess(
        'snippet', train_path, train_dataset)
    sess_title_val, sessions_weight_title_val = set_data_sess(
        'title', val_path, val_dataset)
    sess_snippet_val, sessions_weight_snippet_val = set_data_sess(
        'snippet', val_path, val_dataset)
    DFS_tag_train, DFS_class_train, BFS_tag_train, BFS_class_train, rels_train, num_data_train = set_data_html(
        train_path, train_dataset)
    DFS_tag_val, DFS_class_val, BFS_tag_val, BFS_class_val, rels_val, num_data_val = set_data_html(
        val_path, val_dataset)

    print('train data num:{}'.format(num_data_train))
    print('val data num:{}'.format(num_data_val))

    print("{} Start training...".format(datetime.now()))
    print("{} Open Tensorboard at --logdir {}".format(datetime.now(),
                                                      filewriter_path))
    if num_train == 'all':
        num_train = num_data_train
    else:
        num_train = int(num_train)
    if num_val == 'all':
        num_val = num_data_val
    else:
        num_val = int(num_val)

    for epoch in range(num_epochs):
        print("{} Epoch number: {}".format(datetime.now(), epoch + 1))
        step = 1
        for iter in xrange(num_train / batch_size):
            ind = set_random_ind(num_data_train, batch_size, random=True)
            pic_input, label_input = data_batch_image(images_train, rels_train,
                                                      num_data_train,
                                                      batch_size, ind)
            type_input = data_batch_type(type_train, batch_size, ind)
            title_input, title_len_input, label_input, attention_title_input = data_batch_text(
                titles_train, queries_train, window_weight, rels_train,
                num_data_train, batch_size, max_title_len_top, ind)
            snippet_input, snippet_len_input, label_input, attention_snippet_input = data_batch_text(
                snippets_train, queries_train, window_weight, rels_train,
                num_data_train, batch_size, max_snippet_len_top, ind)
            sess_title_input, sess_title_len_input, label_input, attention_sess_title_input = data_batch_text(
                sess_title_train, queries_train, window_weight, rels_train,
                num_data_train, batch_size, sess_sen_len_title, ind)
            sess_snippet_input, sess_snippet_len_input, label_input, attention_sess_snippet_input = data_batch_text(
                sess_snippet_train, queries_train, window_weight, rels_train,
                num_data_train, batch_size, sess_sen_len_snippet, ind)
            sessions_weight_snippet_input = sess_weight_batch(
                'snippet', batch_size, sessions_weight_snippet_train, ind)
            if html_type == 'DFS':
                tag_input, label_input = data_batch_html(
                    DFS_tag_train, rels_train, ind)
                class_input, label_input = data_batch_html(
                    DFS_class_train, rels_train, ind)
            elif html_type == 'BFS':
                tag_input, label_input = data_batch_html(
                    BFS_tag_train, rels_train, ind)
                class_input, label_input = data_batch_html(
                    BFS_class_train, rels_train, ind)

            train_op_, loss_, loss_cross_entropy_, loss_mse_, loss_regularizer_, merged_summary_, pred_final_, pred_combine_, balance_ = sess.run(
                [
                    train_op, loss, loss_cross_entropy, loss_mse,
                    loss_regularizer, merged_summary, pred_final, pred_combine,
                    balance
                ],
                feed_dict={
                    y: label_input,
                    keep_prob: dropout_rate,
                    x: pic_input,
                    vr_type: type_input,
                    title: title_input,
                    title_len: title_len_input,
                    session_title: sess_title_input,
                    sess_len_title: sess_title_len_input,
                    attention_title: attention_title_input,
                    snippet: snippet_input,
                    snippet_len: snippet_len_input,
                    session_snippet: sess_snippet_input,
                    sess_len_snippet: sess_snippet_len_input,
                    sessions_weight_snippet: sessions_weight_snippet_input,
                    attention_snippet: attention_snippet_input,
                    html_tag: tag_input,
                    html_class: class_input
                })
            print(
                "the " + str(epoch + 1) + 'th epoch, ' + str(iter + 1) +
                'th batch:  loss:{}  loss_cross_entropy:{}  loss_mse:{}  loss_regularizer:{}'
                .format(loss_, loss_cross_entropy_, loss_mse_,
                        loss_regularizer_))
            print(balance_)

            if step % display_step == 0:
                writer.add_summary(merged_summary_,
                                   epoch * num_train / batch_size + step)
            step += 1

        dropout_rate_val = 1
        print("{} Start validation...".format(datetime.now()))
        loss_total = 0.
        pred_all, label_all = [], []
        iters = num_val / batch_size
        for iter in xrange(iters):
            ind = set_random_ind(num_data_val,
                                 batch_size,
                                 random=False,
                                 iter_=iter)
            pic_input, label_input = data_batch_image(images_val, rels_val,
                                                      num_data_val, batch_size,
                                                      ind)
            type_input = data_batch_type(type_val, batch_size, ind)
            title_input, title_len_input, label_input, attention_title_input = data_batch_text(
                titles_val, queries_val, window_weight, rels_val, num_data_val,
                batch_size, max_title_len_top, ind)
            snippet_input, snippet_len_input, label_input, attention_snippet_input = data_batch_text(
                snippets_val, queries_val, window_weight, rels_val,
                num_data_val, batch_size, max_snippet_len_top, ind)
            sess_title_input, sess_title_len_input, label_input, attention_sess_title_input = data_batch_text(
                sess_title_val, queries_val, window_weight, rels_val,
                num_data_val, batch_size, sess_sen_len_title, ind)
            sess_snippet_input, sess_snippet_len_input, label_input, attention_sess_snippet_input = data_batch_text(
                sess_snippet_val, queries_val, window_weight, rels_val,
                num_data_val, batch_size, sess_sen_len_snippet, ind)
            sessions_weight_snippet_input = sess_weight_batch(
                'snippet', batch_size, sessions_weight_snippet_val, ind)

            if html_type == 'DFS':
                tag_input, label_input = data_batch_html(
                    DFS_tag_val, rels_val, ind)
                class_input, label_input = data_batch_html(
                    DFS_class_val, rels_val, ind)
            elif html_type == 'BFS':
                tag_input, label_input = data_batch_html(
                    BFS_tag_val, rels_val, ind)
                class_input, label_input = data_batch_html(
                    BFS_class_val, rels_val, ind)
            loss_, loss_cross_entropy_, loss_mse_, loss_regularizer_ = sess.run(
                [loss, loss_cross_entropy, loss_mse, loss_regularizer],
                feed_dict={
                    y: label_input,
                    keep_prob: dropout_rate,
                    x: pic_input,
                    vr_type: type_input,
                    title: title_input,
                    title_len: title_len_input,
                    session_title: sess_title_input,
                    sess_len_title: sess_title_len_input,
                    attention_title: attention_title_input,
                    snippet: snippet_input,
                    snippet_len: snippet_len_input,
                    session_snippet: sess_snippet_input,
                    sess_len_snippet: sess_snippet_len_input,
                    sessions_weight_snippet: sessions_weight_snippet_input,
                    attention_snippet: attention_snippet_input,
                    html_tag: tag_input,
                    html_class: class_input
                })
            loss_total += loss_ * batch_size
            print(
                "the " + str(epoch + 1) + 'th epoch, ' + str(iter + 1) +
                'th batch:  loss:{}  loss_cross_entropy:{}  loss_mse:{}  loss_regularizer:{}'
                .format(loss_, loss_cross_entropy_, loss_mse_,
                        loss_regularizer_))
            print('average loss: {}'.format(loss_total * 1.0 / iters /
                                            batch_size))

        print("{} Saving checkpoint of model...".format(datetime.now()))
        checkpoint_name = os.path.join(
            checkpoint_path, 'model_JRE_epoch_' + str(epoch + 1) + '.ckpt')
        save_path = saver.save(sess, checkpoint_name)
        print("{} Model checkpoint saved at {}".format(datetime.now(),
                                                       checkpoint_name))
コード例 #17
0
ファイル: prac7ConvMLPModel.py プロジェクト: lvzheng18/4702
def prac7ConvMLPModel(model='MLP',
                      MLPTop={},
                      convTop={},
                      optimiser={},
                      act=tf.nn.relu,
                      max_steps=100):
    # Import data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    #Create Inputs x is MNIST image and y_labels is the label
    tf.reset_default_graph()
    sess = tf.InteractiveSession()
    optimise = Helpers.optimiserParams(optimiser)
    if optimise == None:
        print("Invalid Optimiser")
        return
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, 784], name='x-input')
        y_labels = tf.placeholder(tf.float32, [None, 10], name='y-input')
    with tf.name_scope('input_reshape'):
        image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
        tf.summary.image('input', image_shaped_input, 10)
    #Generate hidden layers
    layers = {}
    if model == 'convNet':
        topology = Helpers.convParams(convTop)
        FCLayerSize = topology.pop('FCLayerSize')
        for i in range(topology.pop('convPoolLayers')):
            if i == 0:
                layers[str(i)] = Helpers.convLayer(image_shaped_input,
                                                   "convPoolLayer" + str(i), i,
                                                   **topology)
            else:
                layers[str(i)] = Helpers.convLayer(layers[str(i - 1)],
                                                   "convPoolLayer" + str(i), i,
                                                   **topology)
        FC1 = Helpers.conv2FCLayer(layers[str(i)], FCLayerSize, "FC1")
        y = Helpers.FCLayer(FC1,
                            FCLayerSize,
                            10,
                            'output_layer',
                            act=tf.identity)
    elif model == 'MLP':
        hiddenDims = MLPTop.setdefault("hiddenDims", [500])
        for i in range(len(hiddenDims)):
            if i == 0:
                layers[str(i)] = Helpers.FCLayer(x, 784, hiddenDims[i],
                                                 "hidden_layer_" + str(i))
            else:
                layers[str(i)] = Helpers.FCLayer(layers[str(i - 1)],
                                                 hiddenDims[i - 1],
                                                 hiddenDims[i],
                                                 "hidden_layer_" + str(i))
        y = Helpers.FCLayer(layers[str(i)],
                            hiddenDims[i],
                            10,
                            'output_layer',
                            act=tf.identity)
    else:
        print("MLP or convNet - nothing else is valid")
        return
    with tf.name_scope('cross_entropy'):
        diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_labels,
                                                       logits=y)
        with tf.name_scope('total'):
            cross_entropy = tf.reduce_mean(diff)
    tf.summary.scalar('cross_entropy', cross_entropy)
    with tf.name_scope('train'):
        train_step = optimise.minimize(cross_entropy)
    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            correct_prediction = tf.equal(tf.argmax(y, 1),
                                          tf.argmax(y_labels, 1))
        with tf.name_scope('accuracy'):
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', accuracy)
    merged = tf.summary.merge_all()
    testPath, trainPath = Helpers.getSaveDir(model)
    train_writer = tf.summary.FileWriter(trainPath, sess.graph)
    test_writer = tf.summary.FileWriter(testPath)
    tf.global_variables_initializer().run()

    def feed_dict(train):
        """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
        if train:
            xs, ys = mnist.train.next_batch(100)
        else:
            xs, ys = mnist.test.images, mnist.test.labels
        return {x: xs, y_labels: ys}

    for i in range(max_steps):
        if i % 10 == 0:  # Record summaries and test-set accuracy
            summary, acc = sess.run([merged, accuracy],
                                    feed_dict=feed_dict(False))
            test_writer.add_summary(summary, i)
            print('Accuracy at step %s: %s' % (i, acc))
        else:  # Record train set summaries, and train
            if i % 25 == 24:  # Record execution stats
                run_options = tf.RunOptions(
                    trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()
                summary, _ = sess.run([merged, train_step],
                                      feed_dict=feed_dict(True),
                                      options=run_options,
                                      run_metadata=run_metadata)
                train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
                train_writer.add_summary(summary, i)
                print('Adding run metadata for', i)
            else:  # Record a summary
                summary, _ = sess.run([merged, train_step],
                                      feed_dict=feed_dict(True))
                train_writer.add_summary(summary, i)
    train_writer.close()
    test_writer.close()
    print(
        "Accuracy on test set: ",
        sess.run(accuracy,
                 feed_dict={
                     x: mnist.test.images,
                     y_labels: mnist.test.labels
                 }))
    sess.close()
    Helpers.openTensorBoard(trainPath, testPath)
コード例 #18
0
def nn(labelled_data, prediction_features, hidden1_units):

    # Random array generation for selecting training, cross-validation and test samples
    features_size = np.size(labelled_data, 1) - 1       # Number of features
    samples_size = np.size(labelled_data, 0)            # Number of samples
    rand_arr = np.arange(samples_size)                  # Random array for shuffling samples
    np.random.shuffle(rand_arr)

    # Training Samples
    train_size = int(np.floor(0.9 * samples_size))      # Number of training samples
    
    train_inputs = labelled_data[rand_arr[0:train_size], 0:features_size]    # Training features
    train_labels = labelled_data[rand_arr[0:train_size], features_size]     # Training labels

    # Cross Validation Samples
    #crossval_size = samples_size - train_size           # Number of cross validation samples
    crossval_size = int(np.floor(0.05 * samples_size))
    
    crossval_inputs = labelled_data[rand_arr[train_size:train_size + crossval_size], 0:features_size]   # Cross Validation features
    crossval_labels = labelled_data[rand_arr[train_size:train_size + crossval_size], features_size]     # Cross Validation labels

    # Test Samples
    test_size = samples_size - (train_size + crossval_size)

    test_inputs = labelled_data[rand_arr[train_size + crossval_size:samples_size], 0:features_size]   # Test features
    test_labels = labelled_data[rand_arr[train_size + crossval_size:samples_size], features_size]     # Test labels
                                
    # Input Features
    a0 = tf.placeholder(tf.float32, [None, features_size])

    # Hidden Layer 1
    W1 = tf.Variable(tf.truncated_normal([features_size, hidden1_units],
                                              stddev=1.0 / np.sqrt(float(features_size))), name='W1')
    b1 = tf.Variable(tf.zeros([hidden1_units]), name='b1')
    a1 = tf.nn.sigmoid(tf.matmul(a0, W1) + b1)

    # Final Layer Shallow
    W_final = tf.Variable(tf.truncated_normal([hidden1_units, 1],
                                         stddev=1.0 / np.sqrt(float(hidden1_units))), name='W_final')
    b_final = tf.Variable(tf.zeros([1]), name='b_final')
                                         
    y = tf.nn.sigmoid(tf.matmul(a1, W_final) + b_final)
    
##    # Hidden Layer 2
##    W2 = tf.Variable(tf.truncated_normal([hidden1_units, hidden2_units],
##                                         stddev=1.0 / np.sqrt(float(hidden1_units))), name='W2')
##    b2 = tf.Variable(tf.zeros([hidden2_units]), name='b2')
##    a2 = tf.nn.sigmoid(tf.matmul(a1, W2) + b2)
##    
##    # Final Layer
##    W_final = tf.Variable(tf.truncated_normal([hidden2_units, 1],
##                                         stddev=1.0 / np.sqrt(float(hidden2_units))), name='W_final')
##    b_final = tf.Variable(tf.zeros([1]), name='b_final')
##                                         
##    y = tf.nn.sigmoid(tf.matmul(a2, W_final) + b_final)
    
    # Labels
    y_ = tf.placeholder(tf.float32, [None, 1])

    # Loss
    loss = tf.reduce_mean(tf.square(y - y_))

    # Initialize Session
    sess = tf.InteractiveSession()
    tf.global_variables_initializer().run()
    
    #Train
    learning_rate = 0.5
    steps = 1000
    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
    for i in range(steps):
        sess.run(train_step, feed_dict={a0: train_inputs,
                                        y_: train_labels})
        if np.mod(i, 100) == 0:
                print('%d: %f' %(i, sess.run(tf.reduce_mean(loss), feed_dict={a0: train_inputs,
                                                                              y_: train_labels})))

    # Cross Validation Error
    print('Cross Validation Error: %f' %sess.run(tf.reduce_mean(loss), feed_dict={a0: crossval_inputs,
                                                                                  y_: crossval_labels}))

    # Test Results
    for i in range(test_size):
        results = int(sess.run(y, feed_dict={a0: test_inputs[i],
                                             y_: test_labels[i]}) > 0.8)
##        results = sess.run(y, feed_dict={a0: test_inputs[i],
##                                         y_: test_labels[i]})
        print('Label: %d Prediction: %f' %(test_labels[i], results))

    # Prediction
    print('Prediction: %f (True if > 0.8)' %(sess.run(y, feed_dict={a0: prediction_features})))
コード例 #19
0
def train(_):
    # create new log files
    if tf.gfile.Exists(FLAGS.log_dir):
        tf.gfile.DeleteRecursively(FLAGS.log_dir)
    tf.gfile.MakeDirs(FLAGS.log_dir)

    tf.reset_default_graph()
    tf.set_random_seed(2)
    np.random.seed(2)

    # Import data
    mnist = input_data.read_data_sets("MNIST-data/", one_hot=True)

    X_train = mnist.train.images.reshape(mnist.train.images.shape[0], 28, 28,
                                         1)
    y_train = mnist.train.labels.astype(np.int64)
    batch_size = 500

    gen = ImageDataGenerator(rotation_range=6,
                             width_shift_range=0.06,
                             shear_range=0.27,
                             height_shift_range=0.06,
                             zoom_range=0.06)
    train_gen = gen.flow(X_train, y_train, batch_size=batch_size, seed=0)

    # Create a multilayer model.
    sess = tf.InteractiveSession()

    # Input placeholders
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, 784], name='x-input')
        y_ = tf.placeholder(tf.int64, [None, 10], name='y-input')

    def weight_variable(shape):
        """Create a weight variable with appropriate initialization."""
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)

    def bias_variable(shape):
        """Create a bias variable with appropriate initialization."""
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)

    def conv2dx(x, num_outputs):
        return tf.contrib.layers.conv2d(
            x,
            kernel_size=[3, 3],
            num_outputs=num_outputs,
            stride=[1, 1],
            padding='SAME',
            normalizer_fn=tf.layers.batch_normalization,
            normalizer_params={
                "training": False,
                "reuse": False
            },
            activation_fn=tf.nn.relu,
        )

    x_image = tf.reshape(x, [-1, 28, 28, 1])

    #conv1 with batch normalisation
    conv1 = conv2dx(x_image, 32)
    print("conv1" + str(conv1.get_shape()))

    #conv2 with batch normalisation
    conv2 = conv2dx(conv1, 64)
    print("conv2" + str(conv2.get_shape()))

    #pool1
    pool1 = tf.nn.max_pool(conv2,
                           ksize=[1, 2, 2, 1],
                           strides=[1, 2, 2, 1],
                           padding='SAME')
    print("pool1" + str(pool1.get_shape()))

    #conv3 with batch normalisation
    conv3 = conv2dx(pool1, 64)
    print("conv1" + str(conv3.get_shape()))

    #conv4 with batch normalisation
    conv4 = conv2dx(conv3, 64)
    print("conv4" + str(conv4.get_shape()))

    #pool2
    pool2 = tf.nn.max_pool(conv4,
                           ksize=[1, 2, 2, 1],
                           strides=[1, 2, 2, 1],
                           padding='SAME')
    print("pool1" + str(pool2.get_shape()))

    # dense1 with flatten
    W_fc1 = weight_variable([28 * 28 * 16, 512])
    b_fc1 = bias_variable([512])

    flat = tf.reshape(conv3, [-1, 28 * 28 * 16])
    fc1 = tf.nn.relu(tf.matmul(flat, W_fc1) + b_fc1)
    print("fc1" + str(fc1.get_shape()))

    keep_prob = tf.placeholder(tf.float32)
    fc1_drop = tf.nn.dropout(fc1, keep_prob)
    print("fc1_drop" + str(fc1_drop.get_shape()))

    # dense2 then softmax the output
    W_fc2 = weight_variable([512, 10])
    b_fc2 = bias_variable([10])

    y = tf.nn.softmax(tf.matmul(fc1_drop, W_fc2) + b_fc2)
    print("y" + str(y.get_shape()))

    with tf.name_scope('cross_entropy'):
        with tf.name_scope('total'):
            cross_entropy = tf.reduce_mean(-tf.reduce_sum(
                tf.cast(y_, tf.float32) * tf.log(y), reduction_indices=[1]))
            # cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=y_, logits=y)
    tf.summary.scalar('cross_entropy', cross_entropy)

    with tf.name_scope('train'):
        train_step = tf.train.AdamOptimizer(
            FLAGS.learning_rate).minimize(cross_entropy)

    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        with tf.name_scope('accuracy'):
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', accuracy)

    # Merge all the summaries and write them out
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train',
                                         sess.graph,
                                         flush_secs=10)
    test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test', flush_secs=10)
    tf.global_variables_initializer().run()

    def feed_dict(train):
        if train:
            xs, ys = next(train_gen)
            xs = xs.reshape(batch_size, 28 * 28)
            k = FLAGS.dropout
        else:
            xs, ys = mnist.test.images, mnist.test.labels
            k = 1.0
        return {x: xs, y_: ys, keep_prob: k}

    for i in range(FLAGS.max_steps + 1):
        if i % 100 == 0:  # Record summaries and test-set accuracy
            summary, acc = sess.run([merged, accuracy],
                                    feed_dict=feed_dict(False))
            test_writer.add_summary(summary, i)
            print('%s Accuracy at step %s: %s' % (datetime.now(), i, acc))
        else:  # Record train set summaries, and train
            if i % 100 == 99:  # Record execution stats
                run_options = tf.RunOptions()
                run_metadata = tf.RunMetadata()
                summary, _ = sess.run([merged, train_step],
                                      feed_dict=feed_dict(True),
                                      options=run_options,
                                      run_metadata=run_metadata)
                train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
                train_writer.add_summary(summary, i)
                # print('Adding run metadata for', i)
            else:  # Record a summary
                summary, _ = sess.run([merged, train_step],
                                      feed_dict=feed_dict(True))
                if i % 10 == 0:
                    train_writer.add_summary(summary, i)
    train_writer.close()
    test_writer.close()
コード例 #20
0
ファイル: test.py プロジェクト: dim912/hack_sentiments
data = tf.nn.embedding_lookup(wordVectors, input_data)

lstmCell = tf.contrib.rnn.BasicLSTMCell(lstmUnits)
lstmCell = tf.contrib.rnn.DropoutWrapper(cell=lstmCell, output_keep_prob=0.25)
value, _ = tf.nn.dynamic_rnn(lstmCell, data, dtype=tf.float32)

weight = tf.Variable(tf.truncated_normal([lstmUnits, numClasses]))
bias = tf.Variable(tf.constant(0.1, shape=[numClasses]))
value = tf.transpose(value, [1, 0, 2])
last = tf.gather(value, int(value.get_shape()[0]) - 1)
prediction = (tf.matmul(last, weight) + bias)

correctPred = tf.equal(tf.argmax(prediction, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correctPred, tf.float32))

sess = tf.InteractiveSession()
saver = tf.train.Saver()

saver = tf.train.import_meta_graph('models/pretrained_lstm.ckpt-60000.meta')
saver.restore(sess, tf.train.latest_checkpoint('models'))

# Removes punctuation, parentheses, question marks, etc., and leaves only alphanumeric characters
import re
strip_special_chars = re.compile("[^A-Za-z0-9 ]+")


def cleanSentences(string):
    string = string.lower().replace("<br />", " ")
    return re.sub(strip_special_chars, "", string.lower())

コード例 #21
0
def evaluation(img_path, ckpt_path):
    tf.reset_default_graph()
    #画像を開く
    f = open(img_path, 'r')
    #画像読み込み
    img = cv2.imread(img_path, cv2.IMREAD_COLOR)
    #モノクロ画像に変換
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    face = faceCascade.detectMultiScale(gray, 1.1, 3)
    if len(face) > 0:
        for rect in face:
            #加工した画像に適当な名前をつける
            random_str = str(random.random())
            #顔部分を赤線で書く
            cv2.rectangle(img, tuple(rect[0:2]), tuple(rect[0:2]+rect[2:4])
                          ,(0,0,255), thickness=2)
            #顔部分を赤線で囲んだ画像の保存先を記入
            ###############################################################################
            face_detect_img_path = '/顔検出した画像のパス'+random_str+'.jpg' #顔検出した画像のパスを記入
            ###############################################################################
            #顔部分を赤線で囲んだ画像の保存
            cv2.imwrite(face_detect_img_path, img)
            x = rect[0]
            y = rect[1]
            w = rect[2]
            h = rect[3]
            #検出した顔を切り抜いた画像を保存する場所を記入
            ###############################################################################
            cv2.imwrite('/保存先のパス' + random_str + '.jpg', img[y:y+h, x:x+x+w]) 
            #Tensorflowへ渡す切り抜いた顔画像
            target_image_path = '/保存先のパス' + random_str + '.jpg' 
           ###############################################################################
    else:
        #顔が見つからなければ処理終了
        print('image:NoFace')
        return
    f.close()
    
    f = open(target_image_path, 'r')
    #データを入れる配列
    image = []
    img = cv2.imread(target_image_path)
    #28px*28pxにリサイズ
    img = cv2.resize(img, (28, 28))
    #画像情報を1列にした後, 0-1のfloat値にする
    image.append(img.flatten().astype(np.float32)/255.0)
    #numpy形式に変換し、Tensorflowで処理できるようにする
    image = np.asarray(image)
    #入力画像に対して各ラベルの確立を出力して返す
    logits = inference(image, 1.0)
    #We can just use 'c.eval()' without passing 'sess'
    sess = tf.InteractiveSession()
    #restore(パラメータ読み込み)の準備
    saver = tf.train.Saver()
    #変数の初期化
    sess.run(tf.initialize_all_variables())
    if ckpt_path:
        #学習後のパラメータの読み込み
        saver.restore(sess, ckpt_path)
    #sess.run(logits)と同じ
    softmax = logits.eval()
    #判定結果
    result = softmax[0]
    #判定結果を%にして四捨五入
    rates = [round(n*100.0, 1) for n in result]
    humans = []
    #ラベル番号、名前、パーセンテージのHashを作成
    for index, rate in enumerate(rates):
        name = HUMAN_NAMES[index]
        humans.append({
                'label':index,
                'name':name,
                'rate':rate
        })
    #パーセンテージの高い順にソート
    rank = sorted(humans, key=lambda x:x['rate'], reverse=True)
    #判定結果と加工した画像のpathを返す
    return [rank, face_detect_img_path, target_image_path]
コード例 #22
0
    return eval_acc / len(Xv), eval_loss / len(Xv)


NUM_EPOCHS_FULL = 50
S_LEARNING_RATE_FULL = 0.01
F_LEARNING_RATE_FULL = 0.0001
BATCH_SIZE = 16

writerLoss = tf.summary.FileWriter("./logs/project3/loss_")
writerAcc = tf.summary.FileWriter("./logs/project3/acc_")
log_var = tf.Variable(0.0)
tf.summary.scalar("train", log_var)

write_op = tf.summary.merge_all()
plotSession = tf.InteractiveSession()
plotSession.run(tf.global_variables_initializer())


def train():
    with tf.Session(graph=graph) as session:
        # weight initialization
        session.run(tf.global_variables_initializer())

        # full optimization
        maxAcc = 0
        for epoch in range(NUM_EPOCHS_FULL):
            lr = (S_LEARNING_RATE_FULL * (NUM_EPOCHS_FULL - epoch - 1) +
                  F_LEARNING_RATE_FULL * epoch) / (NUM_EPOCHS_FULL - 1)
            training_epoch(epoch, session, train_op, lr)
コード例 #23
0
ファイル: model.py プロジェクト: ibrahim85/IPython2
def train():
    train_data, _ = get_video_data(video_data_path, video_feat_path, train_ratio=0.9)
    captions = train_data['Description'].values
    captions = map(lambda x: x.replace('.', ''), captions)
    captions = map(lambda x: x.replace(',', ''), captions)
    wordtoix, ixtoword, bias_init_vector = preProBuildWordVocab(captions, word_count_threshold=10)

    np.save('./data/ixtoword', ixtoword)

    model = Video_Caption_Generator(
            dim_image=dim_image,
            n_words=len(wordtoix),
            dim_hidden=dim_hidden,
            batch_size=batch_size,
            n_lstm_steps=n_frame_step,
            bias_init_vector=bias_init_vector)

    tf_loss, tf_video, tf_video_mask, tf_caption, tf_caption_mask, tf_probs = model.build_model()
    sess = tf.InteractiveSession()

    saver = tf.train.Saver(max_to_keep=10)
    train_op = tf.train.AdamOptimizer(learning_rate).minimize(tf_loss)
    tf.initialize_all_variables().run()

    for epoch in range(n_epochs):
        index = list(train_data.index)
        np.random.shuffle(index)
        train_data = train_data.ix[index]

        current_train_data = train_data.groupby('video_path').apply(lambda x: x.irow(np.random.choice(len(x))))
        current_train_data = current_train_data.reset_index(drop=True)

        for start,end in zip(
                range(0, len(current_train_data), batch_size),
                range(batch_size, len(current_train_data), batch_size)):

            current_batch = current_train_data[start:end]
            current_videos = current_batch['video_path'].values

            current_feats = np.zeros((batch_size, n_frame_step, dim_image))
            current_feats_vals = map(lambda vid: np.load(vid), current_videos)

            current_video_masks = np.zeros((batch_size, n_frame_step))

            for ind,feat in enumerate(current_feats_vals):
                current_feats[ind][:len(current_feats_vals[ind])] = feat
                current_video_masks[ind][:len(current_feats_vals[ind])] = 1

            current_captions = current_batch['Description'].values
            current_caption_ind = map(lambda cap: [wordtoix[word] for word in cap.lower().split(' ')[:-1] if word in wordtoix], current_captions)

            current_caption_matrix = sequence.pad_sequences(current_caption_ind, padding='post', maxlen=n_frame_step-1)
            current_caption_matrix = np.hstack( [current_caption_matrix, np.zeros( [len(current_caption_matrix),1]) ] ).astype(int)
            current_caption_masks = np.zeros((current_caption_matrix.shape[0], current_caption_matrix.shape[1]))
            nonzeros = np.array( map(lambda x: (x != 0).sum()+1, current_caption_matrix ))

            for ind, row in enumerate(current_caption_masks):
                row[:nonzeros[ind]] = 1

            probs_val = sess.run(tf_probs, feed_dict={
                tf_video:current_feats,
                tf_caption: current_caption_matrix
                })

            _, loss_val = sess.run(
                    [train_op, tf_loss],
                    feed_dict={
                        tf_video: current_feats,
                        tf_video_mask : current_video_masks,
                        tf_caption: current_caption_matrix,
                        tf_caption_mask: current_caption_masks
                        })

            print loss_val
        if np.mod(epoch, 100) == 0:
            print "Epoch ", epoch, " is done. Saving the model ..."
            saver.save(sess, os.path.join(model_path, 'model'), global_step=epoch)