コード例 #1
0
ファイル: loss_segmentation.py プロジェクト: nhu2000/NiftyNet
def generalised_dice_loss(prediction,
                          ground_truth,
                          weight_map=None,
                          type_weight='Square'):
    """
    Function to calculate the Generalised Dice Loss defined in
        Sudre, C. et. al. (2017) Generalised Dice overlap as a deep learning
        loss function for highly unbalanced segmentations. DLMIA 2017

    :param prediction: the logits
    :param ground_truth: the segmentation ground truth
    :param weight_map:
    :param type_weight: type of weighting allowed between labels (choice
        between Square (square of inverse of volume),
        Simple (inverse of volume) and Uniform (no weighting))
    :return: the loss
    """
    ground_truth = tf.to_int64(ground_truth)
    n_voxels = ground_truth.shape[0].value
    n_classes = prediction.shape[1].value
    ids = tf.constant(np.arange(n_voxels), dtype=tf.int64)
    ids = tf.stack([ids, ground_truth], axis=1)
    one_hot = tf.SparseTensor(indices=ids,
                              values=tf.ones([n_voxels], dtype=tf.float32),
                              dense_shape=[n_voxels, n_classes])

    if weight_map is not None:
        weight_map_nclasses = tf.reshape(
            tf.tile(weight_map, [n_classes]), prediction.get_shape())
        ref_vol = tf.sparse_reduce_sum(
            weight_map_nclasses * one_hot, reduction_axes=[0])

        intersect = tf.sparse_reduce_sum(
            weight_map_nclasses * one_hot * prediction, reduction_axes=[0])
        seg_vol = tf.reduce_sum(
            tf.multiply(weight_map_nclasses, prediction), 0)
    else:
        ref_vol = tf.sparse_reduce_sum(one_hot, reduction_axes=[0])
        intersect = tf.sparse_reduce_sum(one_hot * prediction,
                                         reduction_axes=[0])
        seg_vol = tf.reduce_sum(prediction, 0)
    if type_weight == 'Square':
        weights = tf.reciprocal(tf.square(ref_vol))
    elif type_weight == 'Simple':
        weights = tf.reciprocal(ref_vol)
    elif type_weight == 'Uniform':
        weights = tf.ones_like(ref_vol)
    else:
        raise ValueError("The variable type_weight \"{}\""
                         "is not defined.".format(type_weight))
    new_weights = tf.where(tf.is_inf(weights), tf.zeros_like(weights), weights)
    weights = tf.where(tf.is_inf(weights), tf.ones_like(weights) *
                       tf.reduce_max(new_weights), weights)
    generalised_dice_numerator = \
        2 * tf.reduce_sum(tf.multiply(weights, intersect))
    generalised_dice_denominator = \
        tf.reduce_sum(tf.multiply(weights, seg_vol + ref_vol))
    generalised_dice_score = \
        generalised_dice_numerator / generalised_dice_denominator
    return 1 - generalised_dice_score
コード例 #2
0
  def _map_to_tfidf(x):
    """Calculates the inverse document frequency of terms in the corpus.
    Args:
      x : a SparseTensor of int64 representing string indices in vocab.
    Returns:
      The tf*idf values
    """
    # Add one to the reduced term freqnencies to avoid dividing by zero.
    idf = tf.log(tf.to_double(corpus_size) / (
        1.0 + tf.to_double(reduced_term_freq)))

    dense_doc_sizes = tf.to_double(tf.sparse_reduce_sum(tf.SparseTensor(
        indices=x.indices,
        values=tf.ones_like(x.values),
        dense_shape=x.dense_shape), 1))

    # For every term in x, divide the idf by the doc size.
    # The two gathers both result in shape <sum_doc_sizes>
    idf_over_doc_size = (tf.gather(idf, x.values) /
                         tf.gather(dense_doc_sizes, x.indices[:, 0]))

    return tf.SparseTensor(
        indices=x.indices,
        values=idf_over_doc_size,
        dense_shape=x.dense_shape)
コード例 #3
0
ファイル: loss_segmentation.py プロジェクト: nhu2000/NiftyNet
def dice(prediction, ground_truth, weight_map=None):
    """
    Function to calculate the dice loss with the definition given in

        Milletari, F., Navab, N., & Ahmadi, S. A. (2016)
        V-net: Fully convolutional neural
        networks for volumetric medical image segmentation. 3DV 2016

    using a square in the denominator

    :param prediction: the logits
    :param ground_truth: the segmentation ground_truth
    :param weight_map:
    :return: the loss
    """
    ground_truth = tf.to_int64(ground_truth)
    prediction = tf.cast(prediction, tf.float32)
    ids = tf.range(tf.to_int64(tf.shape(ground_truth)[0]), dtype=tf.int64)
    ids = tf.stack([ids, ground_truth], axis=1)
    one_hot = tf.SparseTensor(
        indices=ids,
        values=tf.ones_like(ground_truth, dtype=tf.float32),
        dense_shape=tf.to_int64(tf.shape(prediction)))
    if weight_map is not None:
        n_classes = prediction.shape[1].value
        weight_map_nclasses = tf.reshape(
            tf.tile(weight_map, [n_classes]), prediction.get_shape())
        dice_numerator = 2.0 * tf.sparse_reduce_sum(
            weight_map_nclasses * one_hot * prediction, reduction_axes=[0])
        dice_denominator = \
            tf.reduce_sum(weight_map_nclasses * tf.square(prediction),
                          reduction_indices=[0]) + \
            tf.sparse_reduce_sum(one_hot * weight_map_nclasses,
                                 reduction_axes=[0])
    else:
        dice_numerator = 2.0 * tf.sparse_reduce_sum(
            one_hot * prediction, reduction_axes=[0])
        dice_denominator = \
            tf.reduce_sum(tf.square(prediction), reduction_indices=[0]) + \
            tf.sparse_reduce_sum(one_hot, reduction_axes=[0])
    epsilon_denominator = 0.00001

    dice_score = dice_numerator / (dice_denominator + epsilon_denominator)
    # dice_score.set_shape([n_classes])
    # minimising (1 - dice_coefficients)
    return 1.0 - tf.reduce_mean(dice_score)
コード例 #4
0
ファイル: loss_segmentation.py プロジェクト: nhu2000/NiftyNet
def dice_nosquare(prediction, ground_truth, weight_map=None):
    """
    Function to calculate the classical dice loss

    :param prediction: the logits
    :param ground_truth: the segmentation ground_truth
    :param weight_map:
    :return: the loss
    """
    ground_truth = tf.to_int64(ground_truth)
    n_voxels = ground_truth.shape[0].value
    n_classes = prediction.shape[1].value
    # construct sparse matrix for ground_truth to save space
    ids = tf.constant(np.arange(n_voxels), dtype=tf.int64)
    ids = tf.stack([ids, ground_truth], axis=1)
    one_hot = tf.SparseTensor(indices=ids,
                              values=tf.ones([n_voxels], dtype=tf.float32),
                              dense_shape=[n_voxels, n_classes])
    # dice
    if weight_map is not None:
        weight_map_nclasses = tf.reshape(
            tf.tile(weight_map, [n_classes]), prediction.get_shape())
        dice_numerator = 2.0 * tf.sparse_reduce_sum(
            weight_map_nclasses * one_hot * prediction, reduction_axes=[0])
        dice_denominator = \
            tf.reduce_sum(prediction * weight_map_nclasses,
                          reduction_indices=[0]) + \
            tf.sparse_reduce_sum(weight_map_nclasses * one_hot,
                                 reduction_axes=[0])
    else:
        dice_numerator = 2.0 * tf.sparse_reduce_sum(one_hot * prediction,
                                                    reduction_axes=[0])
        dice_denominator = tf.reduce_sum(prediction, reduction_indices=[0]) + \
                           tf.sparse_reduce_sum(one_hot, reduction_axes=[0])
    epsilon_denominator = 0.00001

    dice_score = dice_numerator / (dice_denominator + epsilon_denominator)
    # dice_score.set_shape([n_classes])
    # minimising (1 - dice_coefficients)
    return 1.0 - tf.reduce_mean(dice_score)
コード例 #5
0
ファイル: mappers.py プロジェクト: cclauss/transform
def _count_docs_with_term(term_frequency):
    """Computes the number of documents in a batch that contain each term.

  Args:
    term_frequency: The `SparseTensor` output of _to_term_frequency.
  Returns:
    A `Tensor` of shape (vocab_size,) that contains the number of documents in
    the batch that contain each term.
  """
    count_of_doc_inter = tf.SparseTensor(
        indices=term_frequency.indices,
        values=tf.ones_like(term_frequency.values),
        dense_shape=term_frequency.dense_shape)
    out = tf.sparse_reduce_sum(count_of_doc_inter, axis=0)
    return tf.expand_dims(out, 0)
コード例 #6
0
ファイル: mappers.py プロジェクト: satya-panda/transform
def _to_term_frequency(x, vocab_size):
    """Creates a SparseTensor of term frequency for every doc/term pair.

  Args:
    x : a SparseTensor of int64 representing string indices in vocab.
    vocab_size: An int - the count of vocab used to turn the string into int64s
        including any OOV buckets.

  Returns:
    a SparseTensor with the count of times a term appears in a document at
        indices <doc_index_in_batch>, <term_index_in_vocab>,
        with size (num_docs_in_batch, vocab_size).
  """
    # Construct intermediary sparse tensor with indices
    # [<doc>, <term_index_in_doc>, <vocab_id>] and tf.ones values.
    split_indices = tf.to_int64(
        tf.split(x.indices, axis=1, num_or_size_splits=2))
    expanded_values = tf.to_int64(tf.expand_dims(x.values, 1))
    next_index = tf.concat(
        [split_indices[0], split_indices[1], expanded_values], axis=1)

    next_values = tf.ones_like(x.values)
    vocab_size_as_tensor = tf.constant([vocab_size], dtype=tf.int64)
    next_shape = tf.concat([x.dense_shape, vocab_size_as_tensor], 0)

    next_tensor = tf.SparseTensor(indices=tf.to_int64(next_index),
                                  values=next_values,
                                  dense_shape=next_shape)

    # Take the intermediary tensor and reduce over the term_index_in_doc
    # dimension. This produces a tensor with indices [<doc_id>, <term_id>]
    # and values [count_of_term_in_doc] and shape batch x vocab_size
    term_count_per_doc = tf.sparse_reduce_sum_sparse(next_tensor, 1)

    dense_doc_sizes = tf.to_double(
        tf.sparse_reduce_sum(
            tf.SparseTensor(indices=x.indices,
                            values=tf.ones_like(x.values),
                            dense_shape=x.dense_shape), 1))

    gather_indices = term_count_per_doc.indices[:, 0]
    gathered_doc_sizes = tf.gather(dense_doc_sizes, gather_indices)

    term_frequency = (tf.to_double(term_count_per_doc.values) /
                      tf.to_double(gathered_doc_sizes))
    return tf.SparseTensor(indices=term_count_per_doc.indices,
                           values=term_frequency,
                           dense_shape=term_count_per_doc.dense_shape)
コード例 #7
0
def conv(features, adj, weights):
    degree = tf.sparse_reduce_sum(adj, axis=1) + 1
    degree = tf.cast(degree, tf.float32)
    degree = tf.pow(degree, -0.5)

    adj = sparse_tensor_diag_matmul(adj, degree, transpose=True)
    adj = sparse_tensor_diag_matmul(adj, degree, transpose=False)

    output = tf.sparse_tensor_dense_matmul(adj, features)

    features = tf.transpose(features)
    features = tf.multiply(tf.multiply(degree, features), degree)
    features = tf.transpose(features)
    output = output + features

    return tf.matmul(output, weights)
コード例 #8
0
    def swtich_loss(prediction, ground_truth, for_brats, weight_map=None):
        if not for_brats:
            prediction = tf.cast(prediction, tf.float32)
            if len(ground_truth.shape) == len(prediction.shape):
                ground_truth = ground_truth[..., -1]
            one_hot = labels_to_one_hot(ground_truth, tf.shape(prediction)[-1])

            dice_numerator = 2.0 * tf.sparse_reduce_sum(one_hot * prediction,
                                                        reduction_axes=[0])
            dice_denominator = \
                tf.reduce_sum(tf.square(prediction), reduction_indices=[0]) + \
                tf.sparse_reduce_sum(one_hot, reduction_axes=[0])
            epsilon_denominator = 0.00001

            dice_score = dice_numerator / (dice_denominator +
                                           epsilon_denominator)
            dice_score.set_shape([7])
            # dice_score.set_shape([n_classes])
            # minimising (1 - dice_coefficients)
            return 1.0 - tf.reduce_mean(dice_score[:4])
        else:
            prediction = tf.cast(prediction, tf.float32)
            if len(ground_truth.shape) == len(prediction.shape):
                ground_truth = ground_truth[..., -1]
            one_hot = labels_to_one_hot(ground_truth, tf.shape(prediction)[-1])
            #prediction = tf.concat([tf.reduce_sum(prediction[:,:4],axis=1,keep_dims=True),prediction[:,1:]],axis=-1)
            #one_hot = tf.concat([tf.expand_dims(one_hot[:,0],axis=-1),one_hot[:,-3:]],axis=-1)

            if weight_map is not None:
                n_classes = prediction.shape[1].value
                weight_map_nclasses = tf.reshape(
                    tf.tile(weight_map, [n_classes]), prediction.get_shape())
                dice_numerator = 2.0 * tf.sparse_reduce_sum(
                    weight_map_nclasses * one_hot * prediction,
                    reduction_axes=[0])
                dice_denominator = \
                    tf.reduce_sum(weight_map_nclasses * tf.square(prediction),
                                  reduction_indices=[0]) + \
                    tf.sparse_reduce_sum(one_hot * weight_map_nclasses,
                                         reduction_axes=[0])
            else:
                dice_numerator = 2.0 * tf.sparse_reduce_sum(
                    one_hot * prediction, reduction_axes=[0])
                dice_denominator = \
                    tf.reduce_sum(tf.square(prediction), reduction_indices=[0]) + \
                    tf.sparse_reduce_sum(one_hot, reduction_axes=[0])
            epsilon_denominator = 0.00001

            dice_score = dice_numerator / (dice_denominator +
                                           epsilon_denominator)
            # minimising (1 - dice_coefficients)
            #dice_score[:4] = 0
            #dice_score = tf.concat([dice_score[-3:],dice_score[:1]],axis=-1)
            print(dice_score)
            return 1.0 - tf.reduce_mean(dice_score)
コード例 #9
0
    def parse(self, tensors, dtype):
        atoms = tensors['atoms']

        sparse = 0.0

        for key, val in self.dress.items():
            sparse += tf.cast(tf.equal(atoms.sparse, key), dtype) * val

        sparse = tf.SparseTensor(atoms.indices, sparse, atoms.mask.shape)
        energy = tf.sparse_reduce_sum(sparse, [-1])

        if 'e_data' in tensors:
            # We are in training
            tensors['e_data'] -= energy
            tensors['e_data'] *= 627.509
        tensors['energy'] = tf.constant(0.0)
コード例 #10
0
    def encoder_attr(self, embs_cate, w_list, b_list):
        embs_cate = tf.nn.l2_normalize(embs_cate, axis=1)
        embs_cnxt = tf.nn.l2_normalize(self.qInfer_network_sparse(
            w_list, b_list),
                                       axis=1)
        p_assign = tf.matmul(embs_cnxt, embs_cate, transpose_b=True) / self.tau

        if not self.gumbel:
            cates = tf.nn.softmax(p_assign, axis=1)
        else:
            cates_dist = RelaxedOneHotCategorical(1, p_assign)
            cates_sample = cates_dist.sample()
            cates_mode = tf.nn.softmax(p_assign, axis=1)
            cates = (self.is_training_ph * cates_sample +
                     (1 - self.is_training_ph) * cates_mode)

        # VAE based encoding
        z_list = []
        zItem_list, cateItem_list = [], []
        kl = None
        x_input2attr = tf.sparse_tensor_dense_matmul(self.kg_mat,
                                                     self.input_ph,
                                                     adjoint_a=True,
                                                     adjoint_b=True)
        x_input2attr = tf.transpose(x_input2attr)
        for k in range(self.K):
            cates_k = tf.reshape(cates[:, k], (1, -1))

            # q-network for user aspects
            x_k = x_input2attr * cates_k
            mu_k, std_k, kl_k = self.q_network(x_k, w_list, b_list)
            eps = tf.random_normal(tf.shape(std_k), dtype=tf.float64)
            z_k = mu_k + self.is_training_ph * eps * std_k
            z_list.append(z_k)
            kl = (kl_k if (kl is None) else (kl + kl_k))

            # q-network for item aspects
            x_k = self.kg_mat.__mul__(cates_k)
            mu_k, std_k, kl_k = self.q_network_sparse(x_k, w_list, b_list)
            eps = tf.random_normal(tf.shape(std_k), dtype=tf.float64)
            z_k = mu_k + self.is_training_ph * eps * std_k
            zItem_list.append(z_k)
            cates_sum_k = tf.sparse_reduce_sum(x_k, axis=1)
            cates_sum_k = tf.reshape(cates_sum_k, (1, -1))
            cateItem_list.append(cates_sum_k / tf.reduce_sum(cates_sum_k))

        return z_list, zItem_list, cateItem_list, kl
コード例 #11
0
    def make_bag_of_words(self, active_words, doc_tokens, batch_size,
                          num_samples, doc_len, vocab_size):
        """Turn sequences of words with extraction labels into a bag of words.

    Args:
      active_words: batch of binary masks indicating picked words.
      doc_tokens: batch of token sequences for each document.
      batch_size: number of sequences in batch.
      num_samples: number of samples of masks for each sequence.
      doc_len: length of sequences.
      vocab_size: size of vocabulary.

    Returns:
      dense_pred_counts: batch of bags of words.
    """

        # can't make a sparse count tensor directly since doesn't support repeated
        # words -- make a new sparse tensor with extra indices to handle repeats
        with tf.variable_scope("bag_of_words"):

            batch_idx = shared_util.repeat_row(num_samples * doc_len,
                                               tf.range(0, batch_size, 1))
            sample_idx = tf.tile(
                shared_util.repeat_row(doc_len, tf.range(0, num_samples, 1)),
                [batch_size])
            tok_idx = tf.tile(tf.range(0, doc_len, 1),
                              [batch_size * num_samples])
            vocab_idx = tf.tile(
                tf.reshape(doc_tokens, [batch_size, 1, doc_len]),
                [1, num_samples, 1])
            active_tok_indices = tf.concat(1, [
                tf.reshape(batch_idx, [-1, 1]),
                tf.reshape(sample_idx, [-1, 1]),
                tf.reshape(tok_idx, [-1, 1]),
                tf.reshape(vocab_idx, [-1, 1])
            ])

            active_toks_sparse = tf.SparseTensor(
                indices=tf.to_int64(active_tok_indices),
                values=tf.reshape(active_words, [-1]),
                shape=tf.to_int64(
                    tf.pack([batch_size, num_samples, doc_len, vocab_size])))

            dense_pred_counts = tf.sparse_reduce_sum(active_toks_sparse,
                                                     reduction_axes=2)

        return dense_pred_counts
コード例 #12
0
def vector_to_adjacency_sym_sparse(inputs):
    G, e, dense_shape = inputs
    e = add_epsilon(e)
    A = tf.SparseTensor(indices=G.indices, values=e, dense_shape=dense_shape)
    D = tf.pow(tf.sparse_reduce_sum(A, 1), -0.5)

    #row wise normalization
    Drow = tf.gather(D, G.indices[:, 0])

    #column wise normalization, currently disabled
    #Dcol = tf.gather(D, G.indices[:, 1])

    #multiply values by D
    # e_ = tf.multiply(tf.multiply(Dcol, e), Drow)
    e_ = tf.multiply(e, Drow)
    A_ = tf.SparseTensor(indices=G.indices, values=e_, dense_shape=dense_shape)
    return A_
コード例 #13
0
ファイル: model.py プロジェクト: NetherNova/neuralrules
        def body(x, previous):
            # batch [max_rule_len, batch_size, num_relations]
            # ==> a_vector : [batch_size, num_relations, 1, 1]
            a_vector = tf.nn.embedding_lookup(self.a_matrix, x)
            weighted_operator_tensor = tensor_mul_batch_vector(a_vector, self.operator_tensor)
            # a_vector_exp = tf.expand_dims(tf.expand_dims(a_vector, 2), 2)

            # [batch_size, num_relations, num_entities, num_entities]
            # weighted_operator_tensor = tf.multiply(a_vector_exp,
            #                                            tf.expand_dims(self.operator_tensor, 0))
            # score with previous input
            u = tf.sparse_reduce_sum(weighted_operator_tensor.__mul__(
                                               tf.expand_dims(tf.expand_dims(previous, 1), 1)), 3)
            # sum up relation weighted vectors
            u_sum = tf.reduce_sum(u, axis=1)
            # [batch_size,num_relations,num_entities,num_entities] * [batch_size,1,num_entities]
            return [x+1, u_sum]
コード例 #14
0
def ElectrostaticDampedShiftedLinear(Ds, Qs, NZP, alpha, Rc):
    """
    A tensorflow linear scaling implementation of the Damped Shifted Electrostatic Force
    http://aip.scitation.org.proxy.library.nd.edu/doi/pdf/10.1063/1.2206581
    Batched over molecules.

    Args:
        Ds: Distances Enumerated by NZP (flat)
        Qs: A batch of Atomic Charges. (nmol X maxatom)
        NZP: a list of nonzero atom pairs NNZ X (mol, i, j).
        alpha: DSF alpha parameter (~0.2)
        Rc: DSF Rc parameter. (15A)
    Returns
        A #Mols X MaxNAtoms X MaxNAtoms matrix of LJ kernel contributions.
    """
    twooversqrtpi = tf.constant(1.1283791671, dtype=tf.float64)
    NZP_shape = tf.shape(NZP)
    Zs_shp = tf.shape(Zs)
    maxnpairs = NZP_shape[0]
    nmols = Zs_shp[0]
    Ii = tf.slice(NZP, [0, 0], [-1, 2])
    Ij = tf.concat(
        [tf.slice(NZP, [0, 0], [-1, 1]),
         tf.slice(NZP, [0, 2], [-1, 1])], 1)
    Qi = tf.reshape(tf.gather_nd(Qs, Ii), [maxnpairs])
    Qj = tf.reshape(tf.gather_nd(Qs, Ij), [maxnpairs])
    # Gather desired LJ parameters.
    Qij = Qi * Qj
    # This is Dan's Equation (18)
    XX = alpha * Rc
    ZZ = tf.erfc(XX) / Rc
    YY = twooversqrtpi * alpha * tf.exp(-XX * XX) / Rc
    K = Qij * (tf.erfc(alpha * Ds) / Ds - ZZ + (Ds - Rc) * (ZZ / Rc + YY))
    K = tf.where(tf.is_nan(K), tf.zeros_like(K), K)
    range_index = tf.reshape(
        tf.range(tf.cast(maxnpairs, tf.int64), dtype=tf.int64), [maxnpairs, 1])
    mol_index = tf.reshape(tf.slice(NZP, [0, 0], [-1, 1]), [maxnpairs, 1])
    inds = tf.reshape(tf.stack([mol_index, range_index], axis=1),
                      [maxnpairs, 2])
    # Now use the sparse reduce sum trick to scatter this into mols.
    sp_atomoutputs = tf.SparseTensor(
        inds,
        tf.reshape(K, [maxnpairs]),
        dense_shape=[tf.cast(nmols, tf.int64),
                     tf.cast(maxnpairs, tf.int64)])
    return tf.sparse_reduce_sum(sp_atomoutputs, axis=1)
コード例 #15
0
    def _call(self, inputs):
        x = inputs

        # dropout
        if self.sparse_inputs:
            x = sparse_dropout(x, 1 - self.dropout, self.num_features_nonzero)
        else:
            x = tf.nn.dropout(x, 1 - self.dropout)

        # sum x
        if self.sparse_inputs:
            sx = tf.sparse_reduce_sum(x, axis=1, keep_dims=True)
        else:
            sx = tf.reduce_sum(x, axis=1, keep_dims=True)
        # convolve
        supports = list()
        for i in range(len(self.support)):
            if not self.featureless:
                pre_sup = dot(x,
                              self.vars['weights_' + str(i)],
                              sparse=self.sparse_inputs)
                pre_sup_b = dot(x,
                                self.vars['weights_b_' + str(i)],
                                sparse=self.sparse_inputs)
            else:
                pre_sup = self.vars['weights_' + str(i)]
                pre_sup_b = self.vars['weights_b_' + str(i)]
            # support = dot(self.support[i], pre_sup, sparse=True)
            # supports.append(support)

            # calculate second order interaction: XW * sum(X)
            # pre_sup_sec_ord = tf.multiply(pre_sup, pre_sup_b) * self.alpha
            pre_sup_sec_ord = tf.multiply(pre_sup,
                                          pre_sup_b) * self.vars['alp']
            # pre_sup_all = tf.concat([pre_sup, pre_sup_sec_ord], axis=1)
            pre_sup_all = tf.add_n([pre_sup, pre_sup_b, pre_sup_sec_ord])
            support = dot(self.support[i], pre_sup_all, sparse=True)
            supports.append(support)
        output = tf.add_n(supports)

        # bias
        if self.bias:
            output += self.vars['bias']

        return self.act(output)
コード例 #16
0
def soft_ncut(image, image_segment, image_weights):
    """
    Args:
        image: [B, H, W, C]
        image_segment: [B, H, W, K]
        image_weights: [B, H*W, H*W]
    Returns:
        Soft_Ncut: scalar
    """

    batch_size = tf.shape(image)[0]
    num_class = tf.shape(image_segment)[-1]
    image_shape = image.get_shape()
    weight_size = image_shape[1].value * image_shape[2].value
    image_segment = tf.transpose(image_segment, [0, 3, 1, 2]) # [B, K, H, W]
    image_segment = tf.reshape(image_segment, tf.stack([batch_size, num_class, weight_size])) # [B, K, H*W]

    # Dis-association
    # [B0, H*W, H*W] @ [B1, K1, H*W] contract on [[2],[2]] = [B0, H*W, B1, K1]
    W_Ak = sparse_tensor_dense_tensordot(image_weights, image_segment, axes=[[2],[2]])
    W_Ak = tf.transpose(W_Ak, [0,2,3,1]) # [B0, B1, K1, H*W]
    W_Ak = sycronize_axes(W_Ak, [0,1], tensor_dims=4) # [B0=B1, K1, H*W]
    # [B1, K1, H*W] @ [B2, K2, H*W] contract on [[2],[2]] = [B1, K1, B2, K2]
    dis_assoc = tf.tensordot(W_Ak, image_segment, axes=[[2],[2]])
    dis_assoc = sycronize_axes(dis_assoc, [0,2], tensor_dims=4) # [B1=B2, K1, K2]
    dis_assoc = sycronize_axes(dis_assoc, [1,2], tensor_dims=3) # [K1=K2, B1=B2]
    dis_assoc = tf.transpose(dis_assoc, [1,0]) # [B1=B2, K1=K2]
    dis_assoc = tf.identity(dis_assoc, name="dis_assoc")

    # Association
    # image_segment: [B, K, H*W]
    sum_W = tf.sparse_reduce_sum(image_weights,axis=2) # [B, W*H]
    assoc = tf.tensordot(image_segment, sum_W, axes=[2,1]) # [B, K, B]
    assoc = sycronize_axes(assoc, [0,2], tensor_dims=3) # [B0=B1, K0]
    assoc = tf.identity(assoc, name="assoc")

    utils.add_activation_summary(dis_assoc)
    utils.add_activation_summary(assoc)

    # Soft NCut
    eps = 1e-6
    soft_ncut = tf.cast(num_class, tf.float32) - \
                tf.reduce_sum((dis_assoc + eps) / (assoc + eps), axis=1)

    return soft_ncut
コード例 #17
0
ファイル: linear_lrp.py プロジェクト: fhvilshoj/lrp
def _sparse_ww(config, Rs, predictions_per_sample, zijs, bias):
    # Zj has shape (batch_size, 1, output_width) dense tensor
    zj = tf.sparse_reduce_sum(zijs, 1, keep_dims=True)

    # Stabilizer
    zj_sign = tf.sign(zj)
    zj_sign = tf.where(tf.equal(zj, 0), tf.ones_like(zj_sign), zj_sign)
    zj += zj_sign * EPSILON

    # construct bias to add to zj
    fractions = zijs / zj

    # Distribute the relevance according to the fractions
    R_new = _sparse_distribute_relevances(Rs, zijs.dense_shape[0],
                                          zijs.dense_shape[1],
                                          predictions_per_sample, fractions)

    return R_new
コード例 #18
0
    def forward(self, save_emb=False):
        denom = tf.reduce_sum(self.input_ph, axis=1, keep_dims=True)
        self.input_ph = self.input_ph.__div__(denom)
        denom = tf.sparse_reduce_sum(self.kg_mat, axis=1, keep_dims=True)
        self.kg_mat = self.kg_mat.__div__(denom)

        zAct_list, cAct_list, klAct = self.encoder_item(
            self.cate_item, self.w_qItem, self.b_qItem)

        zAsp_list, zItem_list, cateItem_list, klAsp = self.encoder_attr(
            self.cate_attr, self.w_qAttr, self.b_qAttr)

        logits, loss_recon = self.decoder(zAct_list, cAct_list,
                                          self.embs_item_self,
                                          self.embs_item_enti, zAsp_list,
                                          zItem_list, cateItem_list)

        return tf.train.Saver(), logits, loss_recon, klAct
コード例 #19
0
  def _tfidf(x):
    split = tf.string_split(x)
    table = lookup.string_to_index_table_from_tensor(
        vocab, num_oov_buckets=0,
        default_value=len(vocab))
    int_text = table.lookup(split)

    term_count_per_doc = get_term_count_per_doc(int_text, len(vocab) + 1)

    # Add one to the reduced term freqnencies to avoid dividing by zero.
    example_count_with_oov = tf.to_float(tf.concat([example_count, [0]], 0))
    idf = tf.log(tf.to_float(corpus_size) / (1.0 + example_count_with_oov))

    dense_doc_sizes = tf.to_float(tf.sparse_reduce_sum(tf.SparseTensor(
        indices=int_text.indices,
        values=tf.ones_like(int_text.values),
        dense_shape=int_text.dense_shape), 1))

    idf_times_term_count = tf.multiply(
        tf.gather(idf, term_count_per_doc.indices[:, 1]),
        tf.to_float(term_count_per_doc.values))
    tfidf_weights = (
        idf_times_term_count / tf.gather(dense_doc_sizes,
                                         term_count_per_doc.indices[:, 0]))

    tfidf_ids = term_count_per_doc.indices[:, 1]

    indices = tf.stack([term_count_per_doc.indices[:, 0],
                        segment_indices(term_count_per_doc.indices[:, 0],
                                        int_text.dense_shape[0])],
                       1)
    dense_shape = term_count_per_doc.dense_shape

    tfidf_st_weights = tf.SparseTensor(indices=indices,
                                       values=tfidf_weights,
                                       dense_shape=dense_shape)
    tfidf_st_ids = tf.SparseTensor(indices=indices,
                                   values=tfidf_ids,
                                   dense_shape=dense_shape)

    if part == 'ids':
      return tfidf_st_ids
    else:
      return tfidf_st_weights
コード例 #20
0
ファイル: decoder.py プロジェクト: hydercps/2birds-gen
    def calculate_final_dist(self, vocab_dist, attn_dist, pointer_gen, passage_words, passage_mask=None):
        '''
        vocab_dist: [batch_size, vsize]
        attn_dist: [batch_size, passage_length]
        pointer_gen: [batch_size, 1]
        passage_words: [batch_size, passage_length]
        passage_mask: [batch_size, passage_length]
        '''
        input_shape = tf.shape(vocab_dist)
        batch_size = input_shape[0]
        vsize = input_shape[1]
        passage_length = tf.shape(passage_words)[1]

        with tf.variable_scope('final_distribution'):
            vocab_dist = pointer_gen * vocab_dist
            attn_dist = (1.0 - pointer_gen) * attn_dist

            # match attn_dist[batch_size, passage_length] to sparse one-hot representation [batch_size, passage_length, vsize]
            batch_nums = tf.range(0, limit=batch_size) # shape (batch_size)
            batch_nums = tf.expand_dims(batch_nums, axis=1) # shape (batch_size, 1)
            batch_nums = tf.tile(batch_nums, [1, passage_length]) # shape (batch_size, passage_length)
            step_nums = tf.range(0, limit=passage_length) # [passage_length]
            step_nums = tf.expand_dims(step_nums, axis=0) # shape (1, passage_length)
            step_nums = tf.tile(step_nums, [batch_size, 1]) # shape (batch_size, passage_length)
            indices = tf.stack((batch_nums, step_nums, passage_words), axis=2) # shape (batch_size, passage_length, 3)
            indices = tf.reshape(indices, [-1, 3]) #[batch_size * passage_length, 3]
            indices = tf.cast(indices, tf.int64)

            shape = [batch_size, passage_length, vsize]
            shape = tf.cast(shape, tf.int64)

            attn_dist = tf.reshape(attn_dist, shape=[-1]) # [batch_size*passage_length]
            one_hot_spare_representation = tf.SparseTensor(indices=indices, values=attn_dist, dense_shape=shape) # [batch_size, passage_length, vsize]

            if passage_mask is not None:
                passage_mask = tf.expand_dims(passage_mask, axis=-1)
                one_hot_spare_representation = one_hot_spare_representation * passage_mask

            one_hot_spare_representation = tf.sparse_reduce_sum(one_hot_spare_representation, axis=1) # [batch_size, vsize]

            vocab_dist = tf.add(vocab_dist, one_hot_spare_representation)

        return vocab_dist # [batch_size, vsize]
コード例 #21
0
    def merge_prob_dist_for_one_step(self, vocab_dist, attn_dist, p_gen, node_idxs, node_mask=None):
        '''
        vocab_dist: [batch_size, vsize]
        attn_dist: [batch_size, passage_length]
        p_gen: [batch_size, 1]
        node_idxs: [batch_size, passage_length]
        node_mask: [batch_size, passage_length]
        '''
        input_shape = tf.shape(vocab_dist)
        batch_size = input_shape[0]
        vsize = input_shape[1]
        passage_length = tf.shape(node_idxs)[1]

        with tf.variable_scope('final_distribution'):
            vocab_dist = p_gen * vocab_dist
            attn_dist = (1.0-p_gen) * attn_dist

            # match attn_dist[batch_size, passage_length] to sparse one-hot representation [batch_size, passage_length, vsize]
            batch_nums = tf.range(0, limit=batch_size) # shape (batch_size)
            batch_nums = tf.expand_dims(batch_nums, axis=1) # shape (batch_size, 1)
            batch_nums = tf.tile(batch_nums, [1, passage_length]) # shape (batch_size, passage_length)
            step_nums = tf.range(0, limit=passage_length) # [passage_length]
            step_nums = tf.expand_dims(step_nums, axis=0) # shape (1, passage_length)
            step_nums = tf.tile(step_nums, [batch_size, 1]) # shape (batch_size, passage_length)
            indices = tf.stack((batch_nums, step_nums, node_idxs), axis=2) # shape (batch_size, passage_length, 3)
            indices = tf.reshape(indices, [-1, 3]) #[batch_size * passage_length, 3]
            indices = tf.cast(indices, tf.int64)

            shape = [batch_size, passage_length, vsize]
            shape = tf.cast(shape, tf.int64)

            attn_dist = tf.reshape(attn_dist, shape=[-1]) # [batch_size*passage_length]
            one_hot_spare_rep = tf.SparseTensor(indices=indices, values=attn_dist, dense_shape=shape) # [batch_size, passage_length, vsize]

            if node_mask is not None:
                node_mask = tf.expand_dims(node_mask, axis=-1)
                one_hot_spare_rep = one_hot_spare_rep * node_mask
            # 前面所做的一切都是将attention分布转换到dict范围内,方便与P_vocab相加
            one_hot_spare_rep = tf.sparse_reduce_sum(one_hot_spare_rep, axis=1) # [batch_size, vsize]
            vocab_dist = tf.add(vocab_dist, one_hot_spare_rep)

        return vocab_dist # [batch_size, vsize]
コード例 #22
0
ファイル: LabelMap.py プロジェクト: ChenCongGit/Caster
    def text_to_label(self,
                      batch_text,
                      return_dense=True,
                      pad_value=-1,
                      return_lengths=False):
        """
        给定字符型文本转化为整型标签序列,只适用于英文句子
        Args:
            text: ascii encoded string tensor with shape [batch_size]
            return_dense: whether to return dense labels
            pad_value: Value used to pad labels to the same length.
            return_lengths: if True, also return text lengths
        Returns:
            labels: sparse or dense tensor of labels
        """
        """
        # 英文句子按空格分词,例如source = ["hello world", "a b c"], delimiter='',
        # 返回tf.SparseTensor对象, st.indices = [0, 0; 0, 1; 1, 0; 1, 1; 1, 2], 
        # st.shape = [2, 3] st.values = ['hello', 'world', 'a', 'b', 'c']
        # The first column of the indices corresponds to the row in source and the second column 
        # corresponds to the index of the split component in this row.
        """
        chars = tf.string_split(batch_text, delimiter='')
        labels_sp = tf.SparseTensor(
            chars.indices, self._char_to_label_table.lookup(chars.values),
            chars.dense_shape)

        if return_dense:
            labels = tf.sparse_tensor_to_dense(labels_sp,
                                               default_value=pad_value)
        else:
            labels = labels_sp

        if return_lengths:
            text_lengths = tf.sparse_reduce_sum(tf.SparseTensor(
                chars.indices, tf.fill([tf.shape(chars.indices)[0]], 1),
                chars.dense_shape),
                                                axis=1)
            text_lengths.set_shape([None])
            return labels, text_lengths
        else:
            return labels
コード例 #23
0
ファイル: utils.py プロジェクト: geffy/tffm
def count_nonzero_wrapper(X, optype):
    """Wrapper for handling sparse and dense versions of `tf.count_nonzero`.

    Parameters
    ----------
    X : tf.Tensor (N, K)
    optype : str, {'dense', 'sparse'}

    Returns
    -------
    tf.Tensor (1,K)
    """
    with tf.name_scope('count_nonzero_wrapper') as scope:
        if optype == 'dense':
            return tf.count_nonzero(X, axis=0, keep_dims=True)
        elif optype == 'sparse':
            indicator_X = tf.SparseTensor(X.indices, tf.ones_like(X.values), X.dense_shape)
            return tf.sparse_reduce_sum(indicator_X, axis=0, keep_dims=True)
        else:
            raise NameError('Unknown input type in count_nonzero_wrapper')
コード例 #24
0
def count_nonzero_wrapper(X, optype):
    """Wrapper for handling sparse and dense versions of `tf.count_nonzero`.

    Parameters
    ----------
    X : tf.Tensor (N, K)
    optype : str, {'dense', 'sparse'}

    Returns
    -------
    tf.Tensor (1,K)
    """
    with tf.name_scope('count_nonzero_wrapper') as scope:
        if optype == 'dense':
            return tf.count_nonzero(X, axis=0, keep_dims=True)
        elif optype == 'sparse':
            indicator_X = tf.SparseTensor(X.indices, tf.ones_like(X.values), X.dense_shape)
            return tf.sparse_reduce_sum(indicator_X, axis=0, keep_dims=True)
        else:
            raise NameError('Unknown input type in count_nonzero_wrapper')
コード例 #25
0
def LJKernelsLinear(Ds, Zs, Ee, Re, NZP):
    """
    Batched over molecules.
    Args:
        Ds: Distances Enumerated by NZP (flat)
        Zs: A batch of Atomic Numbers. (nmol X maxatom X 1)
        Ee: a matrix of LJ well depths.
        Re: a matrix of Bond minima.
        NZP: a list of nonzero atom pairs NNZ X (mol, i, j).
    Returns
        A #Mols vector of LJ energies.
    """
    NZP_shape = tf.shape(NZP)
    Zs_shp = tf.shape(Zs)
    maxnpairs = NZP_shape[0]
    nmols = Zs_shp[0]
    Ii = tf.slice(NZP, [0, 0], [-1, 2])
    Ij = tf.concat(
        [tf.slice(NZP, [0, 0], [-1, 1]),
         tf.slice(NZP, [0, 2], [-1, 1])], 1)
    Zi = tf.reshape(tf.gather_nd(Zs, Ii), [maxnpairs])
    Zj = tf.reshape(tf.gather_nd(Zs, Ij), [maxnpairs])
    # Gather desired LJ parameters.
    Zij = tf.stack([Zi, Zj], axis=1)
    Eeij = tf.reshape(tf.gather_nd(Ee, Zij), [maxnpairs])
    Reij = tf.reshape(tf.gather_nd(Re, Zij), [maxnpairs])
    R = Reij / tf.reshape(Ds, [maxnpairs])
    K = Eeij * (tf.pow(R, 12.0) - 2.0 * tf.pow(R, 6.0))
    K = tf.where(tf.is_nan(K), tf.zeros_like(K), K)
    range_index = tf.reshape(
        tf.range(tf.cast(maxnpairs, tf.int64), dtype=tf.int64), [maxnpairs, 1])
    mol_index = tf.reshape(tf.slice(NZP, [0, 0], [-1, 1]), [maxnpairs, 1])
    inds = tf.reshape(tf.stack([mol_index, range_index], axis=1),
                      [maxnpairs, 2])
    # Now use the sparse reduce sum trick to scatter this into mols.
    sp_atomoutputs = tf.SparseTensor(
        inds,
        tf.reshape(K, [maxnpairs]),
        dense_shape=[tf.cast(nmols, tf.int64),
                     tf.cast(maxnpairs, tf.int64)])
    return tf.sparse_reduce_sum(sp_atomoutputs, axis=1)
コード例 #26
0
  def text_to_labels(self,
                     text,
                     return_dense=True,
                     pad_value=-1,
                     return_lengths=False):
    """Convert text strings to label sequences.
    Args:
      text: ascii encoded string tensor with shape [batch_size]
      dense: whether to return dense labels
      pad_value: Value used to pad labels to the same length.
      return_lengths: if True, also return text lengths
    Returns:
      labels: sparse or dense tensor of labels
    """
    batch_size = tf.shape(text)[0]
    chars = tf.string_split(text, delimiter='')

    labels_sp = tf.SparseTensor(
      chars.indices,
      self._char_to_label_table.lookup(chars.values),
      chars.dense_shape
    )

    if return_dense:
      labels = tf.sparse_tensor_to_dense(labels_sp, default_value=pad_value)
    else:
      labels = labels_sp

    if return_lengths:
      text_lengths = tf.sparse_reduce_sum(
        tf.SparseTensor(
          chars.indices,
          tf.fill([tf.shape(chars.indices)[0]], 1),
          chars.dense_shape
        ),
        axis=1
      )
      text_lengths.set_shape([None])
      return labels, text_lengths
    else:
      return labels
コード例 #27
0
def test_t4():
    print("----------------------")
    sp1 = tf.SparseTensor(indices=[[0, 0], [0, 1], [1, 0]],
                          values=[12, -1, 0],
                          dense_shape=(3, 3))  #
    #sp1.values = sp1.values+1
    sp1_dense = tf.sparse_tensor_to_dense(sp1, default_value=-1)
    sess = tf.Session()
    print("sp1:", sess.run(sp1))
    sp1_sign = tf.sign(sp1)
    sp2 = tf.SparseTensor(indices=sp1.indices,
                          values=sp1.values + 2,
                          dense_shape=sp1.dense_shape)  #
    #sp1_sign = tf.sign(tf.sparse_add(sp1)))
    #print("sp1_sign:",sess.run(sp1_sign))
    print("sp2:", sess.run(sp2))
    sp2_sign = tf.sign(sp2)
    print("sp2_sign:", sess.run(sp2_sign))
    print("sp2_sign_sum:", sess.run(tf.sparse_reduce_sum(sp2_sign, axis=1)))
    print("sp2_sign_sum_fun:",
          sess.run(count_sparse_nonzero(sp1, axis=1, add_default=2)))
コード例 #28
0
    def _post_setup(self):
        self.E_predict = _tf.reduce_sum([
            _tf.sparse_tensor_dense_matmul(self.atom_maps[t],
                                           self.ANNs[t].output)
            for t in self.atom_types
        ],
                                        axis=[0, 2],
                                        name="E_prediction")

        # Tensorflow operation to initialize the variables of the atomic networks
        #self.init_vars = [a.init_vars for a in self.ANNs.itervalues()]

        self.num_atoms = _tf.reduce_sum([
            _tf.sparse_reduce_sum(self.atom_maps[t], axis=1)
            for t in self.atom_types
        ],
                                        axis=0,
                                        name="NumberOfAtoms")
        # Tensorflow operation that calculates the sum squared error per atom.
        # Note that the whole error per atom is squared.
        with _tf.name_scope("RMSE"):
            self.rmse_weights = _tf.placeholder(shape=(None, ),
                                                dtype=precision,
                                                name="weights")
            self.rmse = self.error_scaling * _tf.sqrt(
                _tf.reduce_mean(
                    (self.target - self.E_predict)**2 * self.rmse_weights))
            #self.rmse = self.error_scaling*_tf.sqrt(
            #    _tf.losses.mean_squared_error(self.target,
            #    self.E_predict, weights = 1.0/self.num_atoms**2))
            self.rmse_summ = _tf.summary.scalar("RMSE",
                                                self.rmse,
                                                family="performance")

        self.variables = _tf.get_collection(
            _tf.GraphKeys.MODEL_VARIABLES,
            scope=_tf.get_default_graph().get_name_scope())
        self.saver = _tf.train.Saver(self.variables,
                                     max_to_keep=None,
                                     save_relative_paths=True)
コード例 #29
0
    def weighted_margin_rank_batch(self, tf_prediction_serial, tf_interactions, tf_sample_predictions, tf_n_items,
                                   tf_n_sampled_items):
        positive_interaction_mask = tf.greater(tf_interactions.values, 0.0)
        positive_interaction_indices = tf.boolean_mask(tf_interactions.indices,
                                                       positive_interaction_mask)
        positive_interaction_values = tf.boolean_mask(tf_interactions.values,
                                                      positive_interaction_mask)

        positive_interactions = tf.SparseTensor(indices=positive_interaction_indices,
                                                values=positive_interaction_values,
                                                dense_shape=tf_interactions.dense_shape)
        listening_sum_per_item = tf.sparse_reduce_sum(positive_interactions, axis=0)
        gathered_sums = tf.gather(params=listening_sum_per_item,
                                  indices=tf.transpose(positive_interaction_indices)[1])

        # [ n_positive_interactions ]
        positive_predictions = tf.boolean_mask(tf_prediction_serial,
                                               positive_interaction_mask)

        n_items = tf.cast(tf_n_items, dtype=tf.float32)
        n_sampled_items = tf.cast(tf_n_sampled_items, dtype=tf.float32)

        # [ n_positive_interactions, n_sampled_items ]
        mapped_predictions_sample_per_interaction = tf.gather(params=tf_sample_predictions,
                                                              indices=tf.transpose(positive_interaction_indices)[0])

        # [ n_positive_interactions, n_sampled_items ]
        summation_term = tf.maximum(1.0
                                    - tf.expand_dims(positive_predictions, axis=1)
                                    + mapped_predictions_sample_per_interaction,
                                    0.0)

        # [ n_positive_interactions ]
        sampled_margin_rank = ((n_items / n_sampled_items)
                               * tf.reduce_sum(summation_term, axis=1)
                               * positive_interaction_values / gathered_sums)

        loss = tf.log(sampled_margin_rank + 1.0)
        return loss
コード例 #30
0
    def parse(self, tensors, dtype):
        nodes = tensors['nodes'][self.order]
        sparse = nodes.sparse

        for i, n_out in enumerate(self.n_nodes):
            sparse = tf.layers.dense(sparse,
                                     n_out,
                                     activation=self.act,
                                     name='{}-{}'.format(self.name, i))

        sparse = tf.layers.dense(sparse,
                                 1,
                                 use_bias=False,
                                 activation=None,
                                 name='{}-en'.format(self.name))
        sparse = tf.squeeze(sparse, -1)

        sparse = tf.SparseTensor(nodes.indices, sparse, nodes.mask.shape)
        sparse = tf.sparse_reduce_sum(sparse,
                                      [-i - 1 for i in range(self.order + 1)])

        tensors['energy'] += sparse
コード例 #31
0
ファイル: tf_utils.py プロジェクト: yueyedeai/transform
def _encode_proto(values_dict, message_type):
    """A wrapper around encode_proto_op.encode_proto."""
    field_names = []
    sizes = []
    values = []
    for field_name, value in sorted(values_dict.items(), key=lambda x: x[0]):
        if isinstance(value, tf.SparseTensor):
            size = tf.sparse_reduce_sum(tf.SparseTensor(
                value.indices, tf.ones_like(value.values, dtype=tf.int32),
                value.dense_shape),
                                        axis=1)
            value = tf.sparse_tensor_to_dense(
                value, _DEFAULT_VALUE_BY_DTYPE[value.dtype])
        else:
            value = tf.reshape(value, [tf.shape(value)[0], -1])
            size = tf.fill((tf.shape(value)[0], ), tf.shape(value)[1])
        field_names.append(field_name)
        values.append(value)
        sizes.append(size)

    sizes = tf.stack(sizes, axis=1)
    return encode_proto_op.encode_proto(sizes, values, field_names,
                                        message_type)
コード例 #32
0
ファイル: layers.py プロジェクト: xiaoleiHou214/gc-mc-master
    def attention3(self, inputs, support, la, num1, num2):

        # input: N * E
        attention_size = 64

        s_m = tf.sparse_tensor_dense_matmul(support, inputs)    # M*E   support:[M*N]
        sm_num = tf.sparse_reduce_sum(support, axis=1)     # M*1
        sm_mean = tf.divide(1, sm_num)
        s_m = tf.multiply(sm_mean, tf.transpose(s_m))       # M * e*M
        s_m = tf.transpose(s_m)     # M*E
        # TODO: W * sm
        inputs_t = tf.transpose(inputs)     # M*N
        w_sm = tf.tensordot(s_m, self.vars['w_omega_%s' % (la)], axes=1)    # [M*E] * [E*A] = [M*A]
        # TODO: modifiy
        support_3d = tf.sparse_reshape(support, [num2, 1, num1])       # M*N

        support_3d = tf.sparse_to_dense(support_3d.indices, [num2, 1, num1], support_3d.values,
                                        validate_indices=False, default_value=0.0)

        s_j_all = tf.transpose(tf.multiply(support_3d, inputs_t), [0,2,1])      # M*1*N * [E*N] = [M*E*N]
        w_sj_all = tf.tensordot(s_j_all, self.vars['w_omega_%s' % (la)], axes=1)        # [M*N*E] * [E*A]
        # M*A - M*N*A = M*N*A M*N
        w_sm = tf.reshape(w_sm, [num2, 1, attention_size])      # M*1*A
        euclidean_set = tf.sqrt(tf.reduce_sum(tf.square(w_sm - w_sj_all), 2))       # [M*1*A] * [M*N*A]
        eucl = tf.tanh(euclidean_set)     # M*N
        print("euclidean computing success!")
        print(eucl.shape)

        vu = tf.multiply(self.vars['u_omega_%s' % (la)], eucl)
        # vu = tf.matmul(self.vars['u_omega_%s' % (la)], eucl)
        #vu = tf.tensordot(eucl,self.vars['u_omega_%s' % (la)],axes=1)
        print("vu computing success!")

        alphas = tf.nn.softmax(vu, name='alphas_%s' % (la))  # (B,T) shape
        print("alphas computing success!")

        return alphas
コード例 #33
0
 def q_network_sparse(self, x, w_list, b_list):
     # The q-network contains two layers, an embedding layer and a mapping layer
     mu_q, std_q, kl = None, None, None
     denom = tf.sparse_reduce_sum(tf.square(x), axis=1, keep_dims=True)
     repr = x.__div__(denom)
     for i, (w, b) in enumerate(zip(w_list, b_list)):
         if i != len(w_list) - 1:
             repr = tf.sparse_tensor_dense_matmul(repr,
                                                  w,
                                                  adjoint_a=False,
                                                  adjoint_b=False)
             repr = tf.nn.tanh(repr)
         else:
             repr = tf.matmul(repr, w, a_is_sparse=(i == 0)) + b
             mu_q = repr[:, :self.dim]
             mu_q = tf.nn.l2_normalize(mu_q, axis=1)
             lnvarq_sub_lnvar0 = -repr[:, self.dim:]
             std_q = tf.exp(0.5 * lnvarq_sub_lnvar0) * self.std
             kl = tf.reduce_mean(
                 tf.reduce_sum(
                     0.5 *
                     (-lnvarq_sub_lnvar0 + tf.exp(lnvarq_sub_lnvar0) - 1.),
                     axis=1))
     return mu_q, std_q, kl
コード例 #34
0
ファイル: linear_lrp.py プロジェクト: fhvilshoj/lrp
def _sparse_distribute_bias(config, zijs, bias):
    # Return if bias or the bias strategy is none or throw error if it is all
    # since all will kill the memory (remember we are in sparse land here ;) )
    if bias is None or config.bias_strategy == BIAS_STRATEGY.IGNORE:
        return zijs
    if config.bias_strategy == BIAS_STRATEGY.NONE:
        return zijs
    elif config.bias_strategy == BIAS_STRATEGY.ALL:
        raise NotImplementedError(
            "BIAS_STRATEGY.ALL is not implemented for sparse matmul")

    # Dense Shape (batch_size, input_width, output_width)
    indicators = tf.SparseTensor(
        zijs.indices,
        tf.where(tf.equal(zijs.values, 0), tf.zeros_like(zijs.values),
                 tf.ones_like(zijs.values)), zijs.dense_shape)

    # Count all the indicators in each column
    # Shape: (batch_size, 1, output_width)
    counts = tf.sparse_reduce_sum(indicators, axis=1, keep_dims=True)

    # Hack to avoid dividing by zero (doesn't matter for the final result.
    counts = tf.where(tf.equal(counts, 0), tf.ones_like(counts), counts)

    # Divide the bias by broadcasting it to every sample in the batch
    bias_divided = bias / counts

    # Scale the indicators by the bias
    # Dense shape: (batch_size, input_width, output_width)
    bias_to_add = indicators * bias_divided

    # Create new zijs with the divided bias
    zijs_new = tf.SparseTensor(zijs.indices, zijs.values + bias_to_add.values,
                               zijs.dense_shape)

    return zijs_new
コード例 #35
0
ファイル: linear_lrp.py プロジェクト: fhvilshoj/lrp
def _sparse_epsilon(config, Rs, predictions_per_sample, zijs, bias):
    # Zj has shape (batch_size, 1, output_width) dense tensor
    zj = tf.sparse_reduce_sum(zijs, 1, keep_dims=True)

    # Prepare sparse tensor with duplicated bias for addition with zj
    if bias is not None and config.bias_strategy != BIAS_STRATEGY.IGNORE:
        zj = zj + bias

    zj_sign = tf.sign(zj)
    zj_sign = tf.where(tf.equal(zj, 0), tf.ones_like(zj_sign), zj_sign)
    zj += zj_sign * config.epsilon

    # Distribute bias according to config
    zijs = _sparse_distribute_bias(config, zijs, bias)

    # construct bias to add to zj
    fractions = zijs / zj

    # Distribute the relevance according to the fractions
    R_new = _sparse_distribute_relevances(Rs, zijs.dense_shape[0],
                                          zijs.dense_shape[1],
                                          predictions_per_sample, fractions)

    return R_new
コード例 #36
0
def sparse_message_pass(node_states,
                        adjacency_matrices,
                        num_edge_types,
                        hidden_size,
                        use_bias=True,
                        average_aggregation=False,
                        name="sparse_ggnn"):
  """One message-passing step for a GNN with a sparse adjacency matrix.

  Implements equation 2 (the message passing step) in
  [Li et al. 2015](https://arxiv.org/abs/1511.05493).

  N = The number of nodes in each batch.
  H = The size of the hidden states.
  T = The number of edge types.

  Args:
    node_states: Initial states of each node in the graph. Shape is [N, H].
    adjacency_matrices: Adjacency matrix of directed edges for each edge
      type. Shape is [N, N, T] (sparse tensor).
    num_edge_types: The number of edge types. T.
    hidden_size: The size of the hidden state. H.
    use_bias: Whether to use bias in the hidden layer.
    average_aggregation: How to aggregate the incoming node messages. If
      average_aggregation is true, the messages are averaged. If it is false,
      they are summed.
    name: (optional) The scope within which tf variables should be created.

  Returns:
    The result of one step of Gated Graph Neural Network (GGNN) message passing.
    Shape: [N, H]
  """
  n = tf.shape(node_states)[0]
  t = num_edge_types
  incoming_edges_per_type = tf.sparse_reduce_sum(adjacency_matrices, axis=1)

  # Convert the adjacency matrix into shape [T, N, N] - one [N, N] adjacency
  # matrix for each edge type. Since sparse tensor multiplication only supports
  # two-dimensional tensors, we actually convert the adjacency matrix into a
  # [T * N, N] tensor.
  adjacency_matrices = tf.sparse_transpose(adjacency_matrices, [2, 0, 1])
  adjacency_matrices = tf.sparse_reshape(adjacency_matrices, [t * n, n])

  # Multiply the adjacency matrix by the node states, producing a [T * N, H]
  # tensor. For each (edge type, node) pair, this tensor stores the sum of
  # the hidden states of the node's neighbors over incoming edges of that type.
  messages = tf.sparse_tensor_dense_matmul(adjacency_matrices, node_states)

  # Rearrange this tensor to have shape [N, T * H]. The incoming states of each
  # nodes neighbors are summed by edge type and then concatenated together into
  # a single T * H vector.
  messages = tf.reshape(messages, [t, n, hidden_size])
  messages = tf.transpose(messages, [1, 0, 2])
  messages = tf.reshape(messages, [n, t * hidden_size])

  # Run each of those T * H vectors through a linear layer that produces
  # a vector of size H. This process is equivalent to running each H-sized
  # vector through a separate linear layer for each edge type and then adding
  # the results together.
  #
  # Note that, earlier on, we added together all of the states of neighbors
  # that were connected by edges of the same edge type. Since addition and
  # multiplying by a linear layer are commutative, this process was equivalent
  # to running each incoming edge through a linear layer separately and then
  # adding everything at the end.
  with tf.variable_scope(name, default_name="sparse_ggnn"):
    final_node_states = common_layers.dense(
        messages, hidden_size, use_bias=False)

    # Multiply the bias by for each edge type by the number of incoming nodes
    # of that edge type.
    if use_bias:
      bias = tf.get_variable("bias", initializer=tf.zeros([t, hidden_size]))
      final_node_states += tf.matmul(incoming_edges_per_type, bias)

    if average_aggregation:
      incoming_edges = tf.reduce_sum(incoming_edges_per_type, -1, keepdims=True)
      incoming_edges = tf.tile(incoming_edges, [1, hidden_size])
      final_node_states /= incoming_edges + 1e-7

  return final_node_states