コード例 #1
0
 def train(self,
           sess: tf.InteractiveSession,
           train_x: np.ndarray,
           train_y: np.ndarray,
           valid_x: np.ndarray,
           valid_y: np.ndarray,
           epoch=20,
           batch_size=128,
           valid_batch_size=50,
           step=200,
           verbose=True):
     print(get_now(), 'start training')
     train_idx = sorted(range(len(train_x)),
                        key=lambda x: len(train_x[x]),
                        reverse=True)
     valid_idx = sorted(range(len(valid_x)),
                        key=lambda x: len(valid_x[x]),
                        reverse=True)
     sess.run(tf.global_variables_initializer())
     best_aupr = best_auc = current = 0
     for idx_epoch in range(epoch):
         for i in range(0, len(train_idx), batch_size):
             batch_idx = train_idx[i:i + batch_size]
             train_loss = self.train_step(sess, train_x[batch_idx],
                                          train_y[batch_idx])
             current += 1
             if current % step == 0:
                 print(get_now())
                 valid_loss, valid_res = 0, np.empty([len(valid_idx), 1],
                                                     dtype=int)
                 for j in range(0, len(valid_idx), valid_batch_size):
                     valid_batch_idx = valid_idx[j:j + valid_batch_size]
                     loss, output = self.valid_step(
                         sess, valid_x[valid_batch_idx],
                         valid_y[valid_batch_idx])
                     valid_res[valid_batch_idx] = output
                     valid_loss += loss * len(valid_batch_idx)
                 valid_loss /= len(valid_idx)
                 auc, aupr = get_auc(valid_y, valid_res), get_aupr(
                     valid_y, valid_res)
                 if aupr > best_aupr:
                     best_aupr = aupr
                     best_auc = auc
                     self.saver.save(sess, self.model_path)
                 if verbose:
                     print(get_now(), current, current * batch_size,
                           idx_epoch, i + batch_size, 'train loss:',
                           round(train_loss, 5), 'valid loss:',
                           round(valid_loss, 5), 'AUC:', round(auc,
                                                               5), 'AUPR:',
                           round(aupr, 5))
     print(get_now(), 'Summary ', 'Best AUC:', best_auc, 'Best AUPR:',
           best_aupr)
コード例 #2
0
ファイル: gradient.py プロジェクト: minfeixia/master-code
def get_gradient(network: keras.models.Sequential, X: numpy.array, session: tensorflow.InteractiveSession) -> numpy.array:
    """
    Calculates the gradient for a given network/input
    :param network: Network
    :type network: keras.Sequential
    :param X: Input to network.
    :type X: numpy.array
    :param session: Session object
    :type session: tensorflow.InteractiveSession
    :returns: Gradient as numpy.array
    """
    x = tensorflow.placeholder(tensorflow.float32, X.shape)

    prediction = network(x)

    y_shape = tensorflow.shape(prediction)
    classes = y_shape[1]
    index = tensorflow.argmax(prediction, axis=1)
    target = tensorflow.one_hot(index, classes, on_value=1.0, off_value=0.0)

    logits, = prediction.op.inputs
    loss = tensorflow.nn.softmax_cross_entropy_with_logits(labels=target, logits=logits)
    gradient, = tensorflow.gradients(loss, x)

    return session.run(gradient, feed_dict={x: X, keras.backend.learning_phase(): 0})
コード例 #3
0
 def predict_step(self, sess: tf.InteractiveSession, data_x: np.ndarray):
     batch_num, res = len(data_x), []
     for i in range(batch_num):
         feed_dict = {
             self.data_smi: data_x[i][0],
             self.data_adj: data_x[i][1],
             self.data_seq: data_x[i][2],
             self.training: False
         }
         output = sess.run(self.output, feed_dict=feed_dict)
         res.append(output[0])
     return res
コード例 #4
0
 def train_step(self, sess: tf.InteractiveSession, train_x: np.ndarray,
                train_y: np.ndarray):
     batch_loss, batch_num = 0, len(train_x)
     for i in range(batch_num):
         batch_x, batch_y = train_x[i], train_y[i]
         feed_dict = {
             self.data_smi: batch_x[0],
             self.data_adj: batch_x[1],
             self.data_seq: batch_x[2],
             self.data_y: np.array(batch_y).reshape([-1, 1]),
             self.training: True
         }
         _, loss = sess.run([self.optimizer, self.loss],
                            feed_dict=feed_dict)
         batch_loss += loss / batch_num
     return batch_loss
コード例 #5
0
 def valid_step(self, sess: tf.InteractiveSession, valid_x: np.ndarray,
                valid_y: np.ndarray):
     batch_loss, batch_num, res = 0, len(valid_x), []
     for i in range(batch_num):
         batch_x, batch_y = valid_x[i], valid_y[i]
         feed_dict = {
             self.data_smi: batch_x[0],
             self.data_adj: batch_x[1],
             self.data_seq: batch_x[2],
             self.data_y: np.array(batch_y).reshape([-1, 1]),
             self.training: False
         }
         loss, output = sess.run([self.loss, self.output],
                                 feed_dict=feed_dict)
         batch_loss += loss / batch_num
         res.append(output[0])
     return batch_loss, res
コード例 #6
0
class CNNModel:
    def __init__(self, image_size=[28, 28], char_number=10, channel=1):
        self.image_size = image_size
        self.char_number = char_number
        self.channel = channel
        # self.learning_rate = learning_rate
        # self.eval_every = eval_every
        # self.epochs = epochs
        # self.evaluation_size = evaluation_size
        # self.batch_size = batch_size
        # self.optimizer = optimizer

        self.inputs = placeholder(float32,
                                  shape=[None, image_size[0] * image_size[1]],
                                  name="inputs")

        self.model = reshape(self.inputs,
                             [-1, image_size[0], image_size[1], channel])
        self.labels = placeholder(float32, shape=[None, 10], name="labels")
        self.sess = InteractiveSession()

    def addLayer(self, layer):
        self.model = layer.implement(self.model)

    def addOutputLayer(self, layer):
        self.loss = layer.implement(self.model, self.labels)

    def train(self,
              dataset,
              eval_every=5,
              epochs=500,
              evaluation_size=500,
              batch_size=100,
              optimizer=train.MomentumOptimizer(0.005, 0.9)):
        train_step = optimizer.minimize(self.loss)
        prediction = argmax(self.model, 1, name="prediction")
        result = equal(argmax(self.labels, 1), prediction, name="result")
        self.accuracy = reduce_mean(cast(result, float32), name="accuracy")
        train_loss = []
        train_accuracy = []
        test_accuracy = []

        global_variables_initializer().run()

        for i in range(epochs):
            # Lay ra batch_size hinh anh tu tap train
            train_batch = dataset.train.next_batch(batch_size)
            train_dict = {
                self.inputs: train_batch[0],
                self.labels: train_batch[1]
            }
            if i % eval_every == 0:

                # Cu sau eval_every buoc lap thi test mot lan
                test_batch = dataset.test.next_batch(evaluation_size)
                temp_train_loss = self.loss.eval(feed_dict=train_dict)
                temp_train_accuracy = self.accuracy.eval(feed_dict=train_dict)
                temp_test_accuracy = self.accuracy.eval(
                    feed_dict={
                        self.inputs: test_batch[0],
                        self.labels: test_batch[1]
                    })

                print(
                    'Epoch # %d, Train Loss: %g. Train Accuracy (Test Accuracy): %g (%g)'
                    % (i, temp_train_loss, temp_train_accuracy,
                       temp_test_accuracy))

                # Luu cac gia tri de ve bieu do
                train_loss.append(temp_train_loss)
                train_accuracy.append(temp_train_accuracy)
                test_accuracy.append(temp_test_accuracy)

            # Chay thuat toan toi uu ham mat mat
            self.sess.run(train_step, feed_dict=train_dict)

        # Show plots
        loss_per_epoch(epochs, eval_every, train_loss)
        train_test_accuracy(epochs, eval_every, train_accuracy, test_accuracy)

    def test(self, dataset):
        """
            test model with entire mnist_test
        """
        print('test accuracy %g' % self.accuracy.eval(
            feed_dict={
                self.inputs: dataset.test.images,
                self.labels: dataset.test.labels,
            }))

    def save(self, model_path):
        """
            save model to folder in model_path
        """
        saver = train.Saver()
        saver.save(self.sess, model_path)