コード例 #1
0
def test_keras(data_format):
    # Unable to use `layer_test` as this layer has multiple inputs.
    val_a, val_b = _create_test_data(data_format)

    input_a = tf.keras.Input(shape=val_a.shape[1:])
    input_b = tf.keras.Input(shape=val_b.shape[1:])

    layer = CorrelationCost(
        kernel_size=1,
        max_displacement=2,
        stride_1=1,
        stride_2=2,
        pad=4,
        data_format=data_format,
    )

    expected_output_shape = tuple(
        layer.compute_output_shape([input_a.shape, input_b.shape]))

    x = [input_a, input_b]
    y = layer(x)
    model = tf.keras.models.Model(x, y)
    actual_output = model([val_a, val_b])

    expected_output_type = "float32"
    assert tf.keras.backend.dtype(y[0]) == expected_output_type
    assert actual_output.shape[1:] == expected_output_shape[0][1:]
コード例 #2
0
ファイル: optical_flow_test.py プロジェクト: spidyDev/addons
    def _forward(
        self,
        input_a,
        input_b,
        kernel_size,
        max_displacement,
        stride_1,
        stride_2,
        pad,
        data_format,
    ):

        input_a_op = tf.convert_to_tensor(input_a, dtype=tf.float32)
        input_b_op = tf.convert_to_tensor(input_b, dtype=tf.float32)

        output = CorrelationCost(
            kernel_size=kernel_size,
            max_displacement=max_displacement,
            stride_1=stride_1,
            stride_2=stride_2,
            pad=pad,
            data_format=data_format,
        )([input_a_op, input_b_op])

        return output
コード例 #3
0
ファイル: optical_flow_test.py プロジェクト: suspectxx/addons
 def correlation_fn(input_a, input_b):
     return CorrelationCost(
         kernel_size=kernel_size,
         max_displacement=max_displacement,
         stride_1=stride_1,
         stride_2=stride_2,
         pad=pad,
         data_format=data_format)([input_a, input_b])
コード例 #4
0
    def _keras(self, data_format):
        # Unable to use `layer_test` as this layer has multiple inputs.
        with test_utils.use_gpu():
            val_a = [[[[0, -6, 9, 5], [1, -5, 10, 3], [2, -4, 11, 1]],
                      [[3, -3, 12, -1], [4, -2, 13, -3], [5, -1, 14, -5]]],
                     [[[6, 0, 15, -7], [7, 1, 16, -9], [8, 2, 17, -11]],
                      [[9, 3, 18, -13], [10, 4, 19, -15], [11, 5, 20, -17]]]]
            val_b = np.array(val_a).transpose(2, 3, 0, 1).reshape(2, 2, 3, 4)

            # yapf: disable
            input_a = tf.keras.Input(shape=(2, 3, 4,))
            input_b = tf.keras.Input(shape=(2, 3, 4,))

            layer = CorrelationCost(
                kernel_size=1,
                max_displacement=2,
                stride_1=1,
                stride_2=2,
                pad=4,
                data_format=data_format)

            expected_output_shape = tuple(
                layer.compute_output_shape([(2, 3, 4,), (2, 3, 4,)]))[1:]
            # yapf: enable

            x = [input_a, input_b]
            y = layer(x)
            model = tf.keras.models.Model(x, y)
            actual_output = model.predict([val_a, val_b])

            expected_output_type = 'float32'
            if tf.keras.backend.dtype(y[0]) != expected_output_type:
                raise AssertionError(
                    "Inferred output type %s does not equal "
                    "expected output type %s" %
                    (tf.keras.backend.dtype(y[0]), expected_output_type))

            if actual_output[0].shape != expected_output_shape:
                raise AssertionError(
                    "Expected shape %s does not equal output shape"
                    "%s" % (actual_output[0].shape, expected_output_shape))
コード例 #5
0
    def _keras(self, data_format, use_gpu=False):
        # Unable to use `layer_test` as this layer has multiple inputs.
        with test_utils.device(use_gpu):
            val_a, val_b = _create_test_data(data_format)

            # yapf: disable
            input_a = tf.keras.Input(shape=val_a.shape[1:])
            input_b = tf.keras.Input(shape=val_b.shape[1:])

            layer = CorrelationCost(
                kernel_size=1,
                max_displacement=2,
                stride_1=1,
                stride_2=2,
                pad=4,
                data_format=data_format)

            expected_output_shape = tuple(
                layer.compute_output_shape([input_a.shape, input_b.shape]))
            # yapf: enable

            x = [input_a, input_b]
            y = layer(x)
            model = tf.keras.models.Model(x, y)
            actual_output = model([val_a, val_b])

            expected_output_type = "float32"
            if tf.keras.backend.dtype(y[0]) != expected_output_type:
                raise AssertionError(
                    "Inferred output type %s does not equal "
                    "expected output type %s"
                    % (tf.keras.backend.dtype(y[0]), expected_output_type)
                )

            if actual_output.shape[1:] != expected_output_shape[0][1:]:
                raise AssertionError(
                    "Expected shape %s does not equal output shape"
                    "%s" % (actual_output.shape, expected_output_shape[0])
                )