コード例 #1
0
def main(
    config: str = DEFAULT_YAML,
    h5: str = None,
    subwords: bool = False,
    sentence_piece: bool = False,
    output: str = None,
):
    assert h5 and output
    tf.keras.backend.clear_session()
    tf.compat.v1.enable_control_flow_v2()

    config = Config(config)
    speech_featurizer, text_featurizer = featurizer_helpers.prepare_featurizers(
        config=config,
        subwords=subwords,
        sentence_piece=sentence_piece,
    )

    deepspeech2 = DeepSpeech2(**config.model_config,
                              vocabulary_size=text_featurizer.num_classes)
    deepspeech2.make(speech_featurizer.shape)
    deepspeech2.load_weights(h5, by_name=True)
    deepspeech2.summary(line_length=100)
    deepspeech2.add_featurizers(speech_featurizer, text_featurizer)

    exec_helpers.convert_tflite(model=deepspeech2, output=output)
コード例 #2
0
def main(
    config: str = DEFAULT_YAML,
    h5: str = None,
    sentence_piece: bool = False,
    subwords: bool = False,
    output_dir: str = None,
):
    assert h5 and output_dir
    config = Config(config)
    tf.random.set_seed(0)
    tf.keras.backend.clear_session()

    speech_featurizer, text_featurizer = featurizer_helpers.prepare_featurizers(
        config=config,
        subwords=subwords,
        sentence_piece=sentence_piece,
    )

    # build model
    conformer = Conformer(**config.model_config,
                          vocabulary_size=text_featurizer.num_classes)
    conformer.make(speech_featurizer.shape)
    conformer.load_weights(h5, by_name=True)
    conformer.summary(line_length=100)
    conformer.add_featurizers(speech_featurizer, text_featurizer)

    class ConformerModule(tf.Module):
        def __init__(self, model: Conformer, name=None):
            super().__init__(name=name)
            self.model = model
            self.num_rnns = config.model_config["prediction_num_rnns"]
            self.rnn_units = config.model_config["prediction_rnn_units"]
            self.rnn_nstates = 2 if config.model_config[
                "prediction_rnn_type"] == "lstm" else 1

        @tf.function(
            input_signature=[tf.TensorSpec(shape=[None], dtype=tf.float32)])
        def pred(self, signal):
            predicted = tf.constant(0, dtype=tf.int32)
            states = tf.zeros(
                [self.num_rnns, self.rnn_nstates, 1, self.rnn_units],
                dtype=tf.float32)
            features = self.model.speech_featurizer.tf_extract(signal)
            encoded = self.model.encoder_inference(features)
            hypothesis = self.model._perform_greedy(encoded,
                                                    tf.shape(encoded)[0],
                                                    predicted,
                                                    states,
                                                    tflite=False)
            transcript = self.model.text_featurizer.indices2upoints(
                hypothesis.prediction)
            return transcript

    module = ConformerModule(model=conformer)
    tf.saved_model.save(module,
                        export_dir=output_dir,
                        signatures=module.pred.get_concrete_function())
コード例 #3
0
def main(
    config: str = DEFAULT_YAML,
    saved: str = None,
    mxp: bool = False,
    bs: int = None,
    sentence_piece: bool = False,
    subwords: bool = False,
    device: int = 0,
    cpu: bool = False,
    output: str = "test.tsv",
):
    assert saved and output
    tf.random.set_seed(0)
    tf.keras.backend.clear_session()
    tf.config.optimizer.set_experimental_options({"auto_mixed_precision": mxp})
    env_util.setup_devices([device], cpu=cpu)

    config = Config(config)

    speech_featurizer, text_featurizer = featurizer_helpers.prepare_featurizers(
        config=config,
        subwords=subwords,
        sentence_piece=sentence_piece,
    )

    deepspeech2 = DeepSpeech2(**config.model_config,
                              vocabulary_size=text_featurizer.num_classes)
    deepspeech2.make(speech_featurizer.shape)
    deepspeech2.load_weights(saved, by_name=True)
    deepspeech2.summary(line_length=100)
    deepspeech2.add_featurizers(speech_featurizer, text_featurizer)

    test_dataset = dataset_helpers.prepare_testing_datasets(
        config=config,
        speech_featurizer=speech_featurizer,
        text_featurizer=text_featurizer)
    batch_size = bs or config.learning_config.running_config.batch_size
    test_data_loader = test_dataset.create(batch_size)

    exec_helpers.run_testing(model=deepspeech2,
                             test_dataset=test_dataset,
                             test_data_loader=test_data_loader,
                             output=output)
コード例 #4
0
ファイル: train.py プロジェクト: TensorSpeech/TensorFlowASR
def main(
    config: str = DEFAULT_YAML,
    tfrecords: bool = False,
    sentence_piece: bool = False,
    subwords: bool = False,
    bs: int = None,
    spx: int = 1,
    metadata: str = None,
    static_length: bool = False,
    devices: list = [0],
    mxp: bool = False,
    pretrained: str = None,
):
    tf.keras.backend.clear_session()
    tf.config.optimizer.set_experimental_options({"auto_mixed_precision": mxp})
    strategy = env_util.setup_strategy(devices)

    config = Config(config)

    speech_featurizer, text_featurizer = featurizer_helpers.prepare_featurizers(
        config=config,
        subwords=subwords,
        sentence_piece=sentence_piece,
    )

    train_dataset, eval_dataset = dataset_helpers.prepare_training_datasets(
        config=config,
        speech_featurizer=speech_featurizer,
        text_featurizer=text_featurizer,
        tfrecords=tfrecords,
        metadata=metadata,
    )

    if not static_length:
        speech_featurizer.reset_length()
        text_featurizer.reset_length()

    train_data_loader, eval_data_loader, global_batch_size = dataset_helpers.prepare_training_data_loaders(
        config=config,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        strategy=strategy,
        batch_size=bs,
    )

    with strategy.scope():
        deepspeech2 = DeepSpeech2(**config.model_config,
                                  vocabulary_size=text_featurizer.num_classes)
        deepspeech2.make(speech_featurizer.shape, batch_size=global_batch_size)
        if pretrained:
            deepspeech2.load_weights(pretrained,
                                     by_name=True,
                                     skip_mismatch=True)
        deepspeech2.summary(line_length=100)
        deepspeech2.compile(
            optimizer=config.learning_config.optimizer_config,
            experimental_steps_per_execution=spx,
            global_batch_size=global_batch_size,
            blank=text_featurizer.blank,
        )

    callbacks = [
        tf.keras.callbacks.ModelCheckpoint(
            **config.learning_config.running_config.checkpoint),
        tf.keras.callbacks.experimental.BackupAndRestore(
            config.learning_config.running_config.states_dir),
        tf.keras.callbacks.TensorBoard(
            **config.learning_config.running_config.tensorboard),
    ]

    deepspeech2.fit(
        train_data_loader,
        epochs=config.learning_config.running_config.num_epochs,
        validation_data=eval_data_loader,
        callbacks=callbacks,
        steps_per_epoch=train_dataset.total_steps,
        validation_steps=eval_dataset.total_steps
        if eval_data_loader else None,
    )