コード例 #1
0
def _dist_search_fn(temp_dir, study_id, tuner_id):
    """Multi-process safe tuner instantiation and tuner.search()."""

    # Jitter instantiation so as to avoid contention on study
    # creation and dataset download.
    time.sleep(int(tuner_id[5:]))  # tuner_id is formatted as 'tuner%d'

    # Dataset must be loaded independently in sub-process.
    (x, y), (val_x, val_y) = _load_data(temp_dir)

    tuner = CloudTuner(
        _build_model,
        project_id=_PROJECT_ID,
        region=_REGION,
        objective="acc",
        hyperparameters=_HPS,
        max_trials=5,
        study_id=study_id,
        directory=os.path.join(temp_dir, study_id, tuner_id),
    )
    tuner.tuner_id = tuner_id

    tuner.search(
        x=x,
        y=y,
        epochs=2,
        steps_per_epoch=20,
        validation_steps=10,
        validation_data=(val_x, val_y),
    )
    return tuner
コード例 #2
0
    def testCloudTunerHyperparameters(self):
        """Test case to configure Tuner with HyperParameters object."""
        study_id = "{}_hyperparameters".format(_STUDY_ID_BASE)
        self._study_id = study_id

        tuner = CloudTuner(
            _build_model,
            project_id=_PROJECT_ID,
            region=_REGION,
            objective="acc",
            hyperparameters=_HPS,
            max_trials=5,
            study_id=study_id,
            directory=os.path.join(self.get_temp_dir(), study_id),
        )

        # "Search space summary" comes first, but the order of
        # "learning_rate (Float)" and "num_layers (Int)" is not deterministic,
        # hence they are wrapped as look-ahead assertions in the regex.
        self._assert_output(
            tuner.search_space_summary,
            r".*Search space summary(?=.*learning_rate \(Float\))"
            r"(?=.*num_layers \(Int\).*)",
        )

        tuner.search(
            x=self._x,
            y=self._y,
            epochs=2,
            steps_per_epoch=20,
            validation_steps=10,
            validation_data=(self._val_x, self._val_y),
        )

        self._assert_results_summary(tuner.results_summary)
コード例 #3
0
    def testCloudTunerStudyConfig(self):
        """Test case to configure Tuner with StudyConfig object."""
        # Configure the search space. Specification:
        # https://cloud.google.com/ai-platform/optimizer/docs/reference/rest/v1/projects.locations.studies#StudyConfig  # pylint: disable=line-too-long
        study_config = {
            "metrics": [{"goal": "MAXIMIZE", "metric": "acc"}],
            "parameters": [
                {
                    "discrete_value_spec": {"values": [0.0001, 0.001, 0.01]},
                    "parameter": "learning_rate",
                    "type": "DISCRETE",
                },
                {
                    "integer_value_spec": {"max_value": 10, "min_value": 2},
                    "parameter": "num_layers",
                    "type": "INTEGER",
                },
                {
                    "discrete_value_spec": {"values": [32, 64, 96, 128]},
                    "parameter": "units",
                    "type": "DISCRETE",
                },
            ],
            "algorithm": "ALGORITHM_UNSPECIFIED",
            "automatedStoppingConfig": {
                "decayCurveStoppingConfig": {"useElapsedTime": True}
            },
        }

        study_id = "{}_study_config".format(_STUDY_ID_BASE)
        self._study_id = study_id

        tuner = CloudTuner(
            _build_model,
            project_id=_PROJECT_ID,
            region=_REGION,
            study_config=study_config,
            study_id=study_id,
            max_trials=5,
            directory=os.path.join(self.get_temp_dir(), study_id),
        )

        self._assert_output(
            tuner.search_space_summary,
            r".*Search space summary(?=.*learning_rate \(Choice\))"
            r"(?=.*num_layers \(Int\))(?=.*units \(Int\))",
        )

        tuner.search(
            x=self._x,
            y=self._y,
            epochs=2,
            steps_per_epoch=20,
            validation_steps=10,
            validation_data=(self._val_x, self._val_y),
        )

        self._assert_results_summary(tuner.results_summary)
コード例 #4
0
    def testCloudTunerDatasets(self):
        """Test case to configure Tuner with tf.data.Dataset as input data."""
        train_dataset = (
            tf.data.Dataset.from_tensor_slices((self._x, self._y))
            .batch(128)
            .cache()
            .prefetch(1000)
        )
        eval_dataset = (
            tf.data.Dataset.from_tensor_slices((self._val_x, self._val_y))
            .batch(128)
            .cache()
            .prefetch(1000)
        )

        study_id = "{}_dataset".format(_STUDY_ID_BASE)
        self._study_id = study_id

        tuner = CloudTuner(
            _build_model,
            project_id=_PROJECT_ID,
            region=_REGION,
            objective="acc",
            hyperparameters=_HPS,
            study_id=study_id,
            max_trials=5,
            directory=os.path.join(self.get_temp_dir(), study_id),
        )

        self._assert_output(
            tuner.search_space_summary,
            r".*Search space summary(?=.*learning_rate \(Float\))"
            r"(?=.*num_layers \(Int\).*)",
        )

        tuner.search(
            x=train_dataset,
            epochs=2,
            steps_per_epoch=20,
            validation_steps=10,
            validation_data=eval_dataset,
        )

        self._assert_results_summary(tuner.results_summary)