def _split_generators(self, dl_manager: tfds.download.DownloadManager): """Returns SplitGenerators.""" # TODO(financial_sentiment_dataset): Downloads the data and defines the splits path = dl_manager.download_kaggle_data( 'ankurzing/sentiment-analysis-for-financial-news') # TODO(financial_sentiment_dataset): Returns the Dict[split names, Iterator[Key, Example]] return { 'train': self._generate_examples(path=os.path.join(path, 'all-data.csv')), }
def _split_generators( dl_manager: tfds.download.DownloadManager, ) -> Dict[str, Iterator[Tuple[str, Dict[str, Union[Path, str]]]]]: """Returns SplitGenerators.""" path = dl_manager.download_kaggle_data(_KAGGLE_DATA) path /= "MURA-v1.1" return { "train": Mura._generate_examples(path / "train"), "valid": Mura._generate_examples(path / "valid"), }