def __init__(self): # Initialize Webcam self.stream = cv2.VideoCapture(0) # Starting TensorFlow API with SSD Mobilenet self.detection = DetectionObj(model='ssd_mobilenet_v1_coco_11_06_2017') # Start capturing video so the Webca, will tune itself _, self.frame = self.stream.read() # Set the stop flag to False self.stop = False # Thread(target=self.refresh, args=()).start()
class WebcamStream: def __init__(self): # Initialize Webcam self.stream = cv2.VideoCapture(0) # Starting TensorFlow API with SSD Mobilenet self.detection = DetectionObj(model='ssd_mobilenet_v1_coco_11_06_2017') # Start capturing video so the Webca, will tune itself _, self.frame = self.stream.read() # Set the stop flag to False self.stop = False # Thread(target=self.refresh, args=()).start() def refresh(self): # Looping until an explicit stop is sent # from outside the function while True: if self.stop: return _, self.frame = self.stream.read() def get(self): # returning the annotated image return self.detection.annotate_photogram(self.frame) def halt(self): # setting the halt flag self.stop = True
from tensorflow_detection import DetectionObj if __name__ == '__main__': detection = DetectionObj(model='ssd_mobilenet_v2_coco_11_06_2017') detection.video_pipeline(video="./sample_videos/ducks.mp4", audio=False)
from tensorflow_detection import DetectionObj if __name__ == "__main__": detection = DetectionObj(model='ssd_mobilenet_v1_coco_11_06_2017') images = [ "./sample_images/intersection.jpg", "./sample_images/busy_street.jpg", "./sample_images/doge.jpg" ] detection.file_pipeline(images)
from tensorflow_detection import DetectionObj if __name__ == '__main__': detection = DetectionObj(model='ssd_mobilenet_v1_coco_11_06_2017') detection.webcam_pipeline()