コード例 #1
0
ファイル: tree-rnn.py プロジェクト: louner/tensorflow
def buid_sentence_expression():
    sentence_tree = td.InputTransform(lambda sentence_json: WNJsonDecoder(sentence_json))

    tree_rnn = td.ForwardDeclaration(td.PyObjectType())
    leaf_case = td.GetItem('word_vec', name='leaf_in') >> td.Vector(embedding_size)
    index_case = td.Record({'children': td.Map(tree_rnn()) >> td.Mean(), 'word_vec': td.Vector(embedding_size)}, name='index_in') >> td.Concat(name='concat_root_child') >> td.FC(embedding_size, name='FC_root_child')
    expr_sentence = td.OneOf(td.GetItem('leaf'), {True: leaf_case, False: index_case}, name='recur_in')
    tree_rnn.resolve_to(expr_sentence)

    return sentence_tree >> expr_sentence
コード例 #2
0
def tree_sum_blk(loss_blk):
    # traverse the tree to sum up the loss
    tree_sum_fwd = td.ForwardDeclaration(td.PyObjectType(), td.TensorType([]))
    tree_sum = td.Composition()
    with tree_sum.scope():
        myloss = loss_blk().reads(tree_sum.input)
        children = td.GetItem('children').reads(tree_sum.input)

        mapped = td.Map(tree_sum_fwd()).reads(children)
        summed = td.Reduce(td.Function(tf.add)).reads(mapped)
        summed = td.Function(tf.add).reads(summed, myloss)
        tree_sum.output.reads(summed)
    tree_sum_fwd.resolve_to(tree_sum)
    return tree_sum
コード例 #3
0
def buid_sentence_expression():
    sentence_tree = td.InputTransform(
        lambda sentence_json: WordNode(sentence_json))

    tree_rnn = td.ForwardDeclaration(td.PyObjectType())
    leaf_case = td.GetItem(
        'word_id', name='leaf_in') >> td.Scalar(dtype=tf.int32) >> embedding
    index_case = td.Record({'left': tree_rnn(), 'right': tree_rnn()}) \
                 >> td.Concat(name='concat_root_child') \
                 >> fc

    expr_sentence = td.OneOf(td.GetItem('leaf'), {
        True: leaf_case,
        False: index_case
    },
                             name='recur_in')
    tree_rnn.resolve_to(expr_sentence)

    return sentence_tree >> expr_sentence
コード例 #4
0
def dynamic_pooling_blk():
    """Input: root node dic
    Output: pooled, TensorType([hyper.conv_dim, ])
    """
    leaf_case = feature_detector_blk()

    pool_fwd = td.ForwardDeclaration(td.PyObjectType(),
                                     td.TensorType([
                                         hyper.conv_dim,
                                     ]))
    pool = td.Composition()
    with pool.scope():
        cur_fea = feature_detector_blk().reads(pool.input)
        children = td.GetItem('children').reads(pool.input)

        mapped = td.Map(pool_fwd()).reads(children)
        summed = td.Reduce(td.Function(tf.maximum)).reads(mapped)
        summed = td.Function(tf.maximum).reads(summed, cur_fea)
        pool.output.reads(summed)
    pool = td.OneOf(lambda x: x['clen'] == 0, {True: leaf_case, False: pool})
    pool_fwd.resolve_to(pool)
    return pool
コード例 #5
0
    def __init__(self, image_feat_grid, text_seq_batch, seq_length_batch,
        T_decoder, num_vocab_txt, embed_dim_txt, num_vocab_nmn,
        embed_dim_nmn, lstm_dim, num_layers, assembler,
        encoder_dropout, decoder_dropout, decoder_sampling,
        num_choices, use_qpn, qpn_dropout, reduce_visfeat_dim=False, new_visfeat_dim=256,
        use_gt_layout=None, gt_layout_batch=None,
        scope='neural_module_network', reuse=None):

        with tf.variable_scope(scope, reuse=reuse):
            # Part 0: Visual feature from CNN
            self.reduce_visfeat_dim = reduce_visfeat_dim
            if reduce_visfeat_dim:
                # use an extrac linear 1x1 conv layer (without ReLU)
                # to reduce the feature dimension
                with tf.variable_scope('reduce_visfeat_dim'):
                    image_feat_grid = conv('conv_reduce_visfeat_dim',
                        image_feat_grid, kernel_size=1, stride=1,
                        output_dim=new_visfeat_dim)
                print('visual feature dimension reduced to %d' % new_visfeat_dim)
            self.image_feat_grid = image_feat_grid

            # Part 1: Seq2seq RNN to generate module layout tokensa
            with tf.variable_scope('layout_generation'):
                att_seq2seq = AttentionSeq2Seq(text_seq_batch,
                    seq_length_batch, T_decoder, num_vocab_txt,
                    embed_dim_txt, num_vocab_nmn, embed_dim_nmn, lstm_dim,
                    num_layers, assembler, encoder_dropout, decoder_dropout,
                    decoder_sampling, use_gt_layout, gt_layout_batch)
                self.att_seq2seq = att_seq2seq
                predicted_tokens = att_seq2seq.predicted_tokens
                token_probs = att_seq2seq.token_probs
                word_vecs = att_seq2seq.word_vecs
                neg_entropy = att_seq2seq.neg_entropy
                self.atts = att_seq2seq.atts

                self.predicted_tokens = predicted_tokens
                self.token_probs = token_probs
                self.word_vecs = word_vecs
                self.neg_entropy = neg_entropy

                # log probability of each generated sequence
                self.log_seq_prob = tf.reduce_sum(tf.log(token_probs), axis=0)

            # Part 2: Neural Module Network
            with tf.variable_scope('layout_execution'):
                modules = Modules(image_feat_grid, word_vecs, None, num_choices)
                self.modules = modules
                # Recursion of modules
                att_shape = image_feat_grid.get_shape().as_list()[1:-1] + [1]
                # Forward declaration of module recursion
                att_expr_decl = td.ForwardDeclaration(td.PyObjectType(), td.TensorType(att_shape))
                # _Scene
                case_scene = td.Record([('time_idx', td.Scalar(dtype='int32')),
                                       ('batch_idx', td.Scalar(dtype='int32'))])
                case_scene = case_scene >> td.Function(modules.SceneModule)
                # _Find
                case_find = td.Record([('time_idx', td.Scalar(dtype='int32')),
                                       ('batch_idx', td.Scalar(dtype='int32'))])
                case_find = case_find >> td.Function(modules.FindModule)
                # _Filter
                case_filter = td.Record([('input_0', att_expr_decl()),
                                         ('time_idx', td.Scalar(dtype='int32')),
                                         ('batch_idx', td.Scalar(dtype='int32'))])
                case_filter = case_filter >> td.Function(modules.FilterModule)
                # _FindSameProperty
                case_find_same_property = td.Record([('input_0', att_expr_decl()),
                                                     ('time_idx', td.Scalar(dtype='int32')),
                                                     ('batch_idx', td.Scalar(dtype='int32'))])
                case_find_same_property = case_find_same_property >> \
                    td.Function(modules.FindSamePropertyModule)
                # _Transform
                case_transform = td.Record([('input_0', att_expr_decl()),
                                            ('time_idx', td.Scalar('int32')),
                                            ('batch_idx', td.Scalar('int32'))])
                case_transform = case_transform >> td.Function(modules.TransformModule)
                # _And
                case_and = td.Record([('input_0', att_expr_decl()),
                                      ('input_1', att_expr_decl()),
                                      ('time_idx', td.Scalar('int32')),
                                      ('batch_idx', td.Scalar('int32'))])
                case_and = case_and >> td.Function(modules.AndModule)
                # _Or
                case_or = td.Record([('input_0', att_expr_decl()),
                                     ('input_1', att_expr_decl()),
                                     ('time_idx', td.Scalar('int32')),
                                     ('batch_idx', td.Scalar('int32'))])
                case_or = case_or >> td.Function(modules.OrModule)
                # _Exist
                case_exist = td.Record([('input_0', att_expr_decl()),
                                        ('time_idx', td.Scalar('int32')),
                                        ('batch_idx', td.Scalar('int32'))])
                case_exist = case_exist >> td.Function(modules.ExistModule)
                # _Count
                case_count = td.Record([('input_0', att_expr_decl()),
                                        ('time_idx', td.Scalar('int32')),
                                        ('batch_idx', td.Scalar('int32'))])
                case_count = case_count >> td.Function(modules.CountModule)
                # _EqualNum
                case_equal_num = td.Record([('input_0', att_expr_decl()),
                                            ('input_1', att_expr_decl()),
                                            ('time_idx', td.Scalar('int32')),
                                            ('batch_idx', td.Scalar('int32'))])
                case_equal_num = case_equal_num >> td.Function(modules.EqualNumModule)
                # _MoreNum
                case_more_num = td.Record([('input_0', att_expr_decl()),
                                            ('input_1', att_expr_decl()),
                                            ('time_idx', td.Scalar('int32')),
                                            ('batch_idx', td.Scalar('int32'))])
                case_more_num = case_more_num >> td.Function(modules.MoreNumModule)
                # _LessNum
                case_less_num = td.Record([('input_0', att_expr_decl()),
                                            ('input_1', att_expr_decl()),
                                            ('time_idx', td.Scalar('int32')),
                                            ('batch_idx', td.Scalar('int32'))])
                case_less_num = case_less_num >> td.Function(modules.LessNumModule)
                # _SameProperty
                case_same_property = td.Record([('input_0', att_expr_decl()),
                                                ('input_1', att_expr_decl()),
                                                ('time_idx', td.Scalar('int32')),
                                                ('batch_idx', td.Scalar('int32'))])
                case_same_property = case_same_property >> \
                    td.Function(modules.SamePropertyModule)
                # _Describe
                case_describe = td.Record([('input_0', att_expr_decl()),
                                           ('time_idx', td.Scalar('int32')),
                                           ('batch_idx', td.Scalar('int32'))])
                case_describe = case_describe >> \
                    td.Function(modules.DescribeModule)

                recursion_cases = td.OneOf(td.GetItem('module'), {
                    '_Scene': case_scene,
                    '_Find': case_find,
                    '_Filter': case_filter,
                    '_FindSameProperty': case_find_same_property,
                    '_Transform': case_transform,
                    '_And': case_and,
                    '_Or': case_or})
                att_expr_decl.resolve_to(recursion_cases)

                # For invalid expressions, define a dummy answer
                # so that all answers have the same form
                dummy_scores = td.Void() >> td.FromTensor(np.zeros(num_choices, np.float32))
                output_scores = td.OneOf(td.GetItem('module'), {
                    '_Exist': case_exist,
                    '_Count': case_count,
                    '_EqualNum': case_equal_num,
                    '_MoreNum': case_more_num,
                    '_LessNum': case_less_num,
                    '_SameProperty': case_same_property,
                    '_Describe': case_describe,
                    INVALID_EXPR: dummy_scores})

                # compile and get the output scores
                self.compiler = td.Compiler.create(output_scores)
                self.scores_nmn = self.compiler.output_tensors[0]

            # Add a question prior network if specified
            self.use_qpn = use_qpn
            self.qpn_dropout = qpn_dropout
            if use_qpn:
                self.scores_qpn = question_prior_net(att_seq2seq.encoder_states,
                                                     num_choices, qpn_dropout)
                self.scores = self.scores_nmn + self.scores_qpn
            else:
                self.scores = self.scores_nmn

            # Regularization: Entropy + L2
            self.entropy_reg = tf.reduce_mean(neg_entropy)
            module_weights = [v for v in tf.trainable_variables()
                              if (scope in v.op.name and
                                  v.op.name.endswith('weights'))]
            self.l2_reg = tf.add_n([tf.nn.l2_loss(v) for v in module_weights])
コード例 #6
0
    def __init__(self,
                 config,
                 kb,
                 text_seq_batch,
                 seq_length_batch,
                 num_vocab_txt,
                 num_vocab_nmn,
                 EOS_idx,
                 num_choices,
                 decoder_sampling,
                 use_gt_layout=None,
                 gt_layout_batch=None,
                 scope='neural_module_network',
                 reuse=None):
        with tf.variable_scope(scope, reuse=reuse):
            # Part 1: Seq2seq RNN to generate module layout tokens

            embedding_mat = tf.get_variable(
                'embedding_mat', [num_vocab_txt, config.embed_dim_txt],
                initializer=tf.contrib.layers.xavier_initializer())

            with tf.variable_scope('layout_generation'):
                att_seq2seq = netgen_att.AttentionSeq2Seq(
                    config, text_seq_batch, seq_length_batch, num_vocab_txt,
                    num_vocab_nmn, EOS_idx, decoder_sampling, embedding_mat,
                    use_gt_layout, gt_layout_batch)
                self.att_seq2seq = att_seq2seq
                predicted_tokens = att_seq2seq.predicted_tokens
                token_probs = att_seq2seq.token_probs
                word_vecs = att_seq2seq.word_vecs
                neg_entropy = att_seq2seq.neg_entropy
                self.atts = att_seq2seq.atts

                self.predicted_tokens = predicted_tokens
                self.token_probs = token_probs
                self.word_vecs = word_vecs
                self.neg_entropy = neg_entropy

                # log probability of each generated sequence
                self.log_seq_prob = tf.reduce_sum(tf.log(token_probs), axis=0)

            # Part 2: Neural Module Network
            with tf.variable_scope('layout_execution'):
                modules = Modules(config, kb, word_vecs, num_choices,
                                  embedding_mat)
                self.modules = modules
                # Recursion of modules
                att_shape = [len(kb)]
                # Forward declaration of module recursion
                att_expr_decl = td.ForwardDeclaration(td.PyObjectType(),
                                                      td.TensorType(att_shape))
                # _key_find
                case_key_find = td.Record([
                    ('time_idx', td.Scalar(dtype='int32')),
                    ('batch_idx', td.Scalar(dtype='int32'))
                ])
                case_key_find = case_key_find >> td.ScopedLayer(
                    modules.KeyFindModule, name_or_scope='KeyFindModule')
                # _key_filter
                case_key_filter = td.Record([('input_0', att_expr_decl()),
                                             ('time_idx', td.Scalar('int32')),
                                             ('batch_idx', td.Scalar('int32'))
                                             ])
                case_key_filter = case_key_filter >> td.ScopedLayer(
                    modules.KeyFilterModule, name_or_scope='KeyFilterModule')
                recursion_cases = td.OneOf(td.GetItem('module'), {
                    '_key_find': case_key_find,
                    '_key_filter': case_key_filter
                })
                att_expr_decl.resolve_to(recursion_cases)
                # _val_desc: output scores for choice (for valid expressions)
                predicted_scores = td.Record([('input_0', recursion_cases),
                                              ('time_idx', td.Scalar('int32')),
                                              ('batch_idx', td.Scalar('int32'))
                                              ])
                predicted_scores = predicted_scores >> td.ScopedLayer(
                    modules.ValDescribeModule,
                    name_or_scope='ValDescribeModule')

                # For invalid expressions, define a dummy answer
                # so that all answers have the same form
                INVALID = assembler.INVALID_EXPR
                dummy_scores = td.Void() >> td.FromTensor(
                    np.zeros(num_choices, np.float32))
                output_scores = td.OneOf(td.GetItem('module'), {
                    '_val_desc': predicted_scores,
                    INVALID: dummy_scores
                })

                # compile and get the output scores
                self.compiler = td.Compiler.create(output_scores)
                self.scores = self.compiler.output_tensors[0]

            # Regularization: Entropy + L2
            self.entropy_reg = tf.reduce_mean(neg_entropy)
            module_weights = [
                v for v in tf.trainable_variables()
                if (scope in v.op.name and v.op.name.endswith('weights'))
            ]
            self.l2_reg = tf.add_n([tf.nn.l2_loss(v) for v in module_weights])
コード例 #7
0
    def __init__(self,
                 image_data_batch,
                 image_mean,
                 text_seq_batch,
                 seq_length_batch,
                 T_decoder,
                 num_vocab_txt,
                 embed_dim_txt,
                 num_vocab_nmn,
                 embed_dim_nmn,
                 lstm_dim,
                 num_layers,
                 assembler,
                 encoder_dropout,
                 decoder_dropout,
                 decoder_sampling,
                 num_choices,
                 use_qpn,
                 qpn_dropout,
                 reduce_visfeat_dim=False,
                 new_visfeat_dim=128,
                 use_gt_layout=None,
                 gt_layout_batch=None,
                 map_dim=1024,
                 scope='neural_module_network',
                 reuse=None):

        with tf.variable_scope(scope, reuse=reuse):
            # Part 0: Visual feature from CNN
            with tf.variable_scope('image_feature_cnn'):
                image_data_batch = image_data_batch / 255.0 - image_mean
                image_feat_grid = nlvr_convnet(image_data_batch)
                self.image_feat_grid = image_feat_grid
            # Part 1: Seq2seq RNN to generate module layout tokensa
            with tf.variable_scope('layout_generation'):
                att_seq2seq = AttentionSeq2Seq(
                    text_seq_batch, seq_length_batch, T_decoder, num_vocab_txt,
                    embed_dim_txt, num_vocab_nmn, embed_dim_nmn, lstm_dim,
                    num_layers, assembler, encoder_dropout, decoder_dropout,
                    decoder_sampling, use_gt_layout, gt_layout_batch)
                self.att_seq2seq = att_seq2seq
                predicted_tokens = att_seq2seq.predicted_tokens
                token_probs = att_seq2seq.token_probs
                word_vecs = att_seq2seq.word_vecs
                neg_entropy = att_seq2seq.neg_entropy
                self.atts = att_seq2seq.atts

                self.predicted_tokens = predicted_tokens
                self.token_probs = token_probs
                self.word_vecs = word_vecs
                self.neg_entropy = neg_entropy

                # log probability of each generated sequence
                self.log_seq_prob = tf.reduce_sum(tf.log(token_probs), axis=0)

            # Part 2: Neural Module Network
            with tf.variable_scope('layout_execution'):
                modules = Modules(image_feat_grid, word_vecs, None,
                                  num_choices, map_dim)
                self.modules = modules
                # Recursion of modules
                att_shape = image_feat_grid.get_shape().as_list()[1:-1] + [1]
                # Forward declaration of module recursion
                att_expr_decl = td.ForwardDeclaration(td.PyObjectType(),
                                                      td.TensorType(att_shape))
                # _Find
                case_find = td.Record([('time_idx', td.Scalar(dtype='int32')),
                                       ('batch_idx', td.Scalar(dtype='int32'))
                                       ])
                case_find = case_find >> td.Function(modules.FindModule)
                # _Transform
                case_transform = td.Record([('input_0', att_expr_decl()),
                                            ('time_idx', td.Scalar('int32')),
                                            ('batch_idx', td.Scalar('int32'))])
                case_transform = case_transform >> td.Function(
                    modules.TransformModule)
                # _And
                case_and = td.Record([('input_0', att_expr_decl()),
                                      ('input_1', att_expr_decl()),
                                      ('time_idx', td.Scalar('int32')),
                                      ('batch_idx', td.Scalar('int32'))])
                case_and = case_and >> td.Function(modules.AndModule)
                # _Describe
                case_describe = td.Record([('input_0', att_expr_decl()),
                                           ('time_idx', td.Scalar('int32')),
                                           ('batch_idx', td.Scalar('int32'))])
                case_describe = case_describe >> \
                    td.Function(modules.DescribeModule)

                recursion_cases = td.OneOf(
                    td.GetItem('module'), {
                        '_Find': case_find,
                        '_Transform': case_transform,
                        '_And': case_and
                    })
                att_expr_decl.resolve_to(recursion_cases)

                # For invalid expressions, define a dummy answer
                # so that all answers have the same form
                dummy_scores = td.Void() >> td.FromTensor(
                    np.zeros(num_choices, np.float32))
                output_scores = td.OneOf(td.GetItem('module'), {
                    '_Describe': case_describe,
                    INVALID_EXPR: dummy_scores
                })

                # compile and get the output scores
                self.compiler = td.Compiler.create(output_scores)
                self.scores_nmn = self.compiler.output_tensors[0]

            # Add a question prior network if specified
            self.use_qpn = use_qpn
            self.qpn_dropout = qpn_dropout
            if use_qpn:
                self.scores_qpn = question_prior_net(
                    att_seq2seq.encoder_states, num_choices, qpn_dropout)
                self.scores = self.scores_nmn + self.scores_qpn
                #self.scores = self.scores_nmn
            else:
                self.scores = self.scores_nmn

            # Regularization: Entropy + L2
            self.entropy_reg = tf.reduce_mean(neg_entropy)
            #tf.check_numerics(self.entropy_reg, 'entropy NaN/Inf ')
            #print(self.entropy_reg.eval())
            module_weights = [
                v for v in tf.trainable_variables()
                if (scope in v.op.name and v.op.name.endswith('weights'))
            ]
            self.l2_reg = tf.add_n([tf.nn.l2_loss(v) for v in module_weights])
コード例 #8
0
    def __init__(self,
                 image_batch,
                 text_seq_batch,
                 seq_length_batch,
                 T_decoder,
                 num_vocab_txt,
                 embed_dim_txt,
                 num_vocab_nmn,
                 embed_dim_nmn,
                 lstm_dim,
                 num_layers,
                 EOS_idx,
                 encoder_dropout,
                 decoder_dropout,
                 decoder_sampling,
                 num_choices,
                 use_gt_layout=None,
                 gt_layout_batch=None,
                 scope='neural_module_network',
                 reuse=None):

        with tf.variable_scope(scope, reuse=reuse):
            # Part 0: Visual feature from CNN
            with tf.variable_scope('image_feature_cnn'):
                image_feat_grid = shapes_convnet(image_batch)
                self.image_feat_grid = image_feat_grid

            # Part 1: Seq2seq RNN to generate module layout tokens
            with tf.variable_scope('layout_generation'):
                att_seq2seq = nmn3_netgen_att.AttentionSeq2Seq(
                    text_seq_batch, seq_length_batch, T_decoder, num_vocab_txt,
                    embed_dim_txt, num_vocab_nmn, embed_dim_nmn, lstm_dim,
                    num_layers, EOS_idx, encoder_dropout, decoder_dropout,
                    decoder_sampling, use_gt_layout, gt_layout_batch)
                self.att_seq2seq = att_seq2seq
                predicted_tokens = att_seq2seq.predicted_tokens
                token_probs = att_seq2seq.token_probs
                word_vecs = att_seq2seq.word_vecs
                neg_entropy = att_seq2seq.neg_entropy
                self.atts = att_seq2seq.atts

                self.predicted_tokens = predicted_tokens
                self.token_probs = token_probs
                self.word_vecs = word_vecs
                self.neg_entropy = neg_entropy

                # log probability of each generated sequence
                self.log_seq_prob = tf.reduce_sum(tf.log(token_probs), axis=0)

            # Part 2: Neural Module Network
            with tf.variable_scope('layout_execution'):
                modules = Modules(image_feat_grid, word_vecs, num_choices)
                self.modules = modules
                # Recursion of modules
                att_shape = image_feat_grid.get_shape().as_list()[1:-1] + [1]
                # Forward declaration of module recursion
                att_expr_decl = td.ForwardDeclaration(td.PyObjectType(),
                                                      td.TensorType(att_shape))
                # _Find
                case_find = td.Record([('time_idx', td.Scalar(dtype='int32')),
                                       ('batch_idx', td.Scalar(dtype='int32'))
                                       ])
                case_find = case_find >> \
                    td.ScopedLayer(modules.FindModule, name_or_scope='FindModule')
                # _Transform
                case_transform = td.Record([('input_0', att_expr_decl()),
                                            ('time_idx', td.Scalar('int32')),
                                            ('batch_idx', td.Scalar('int32'))])
                case_transform = case_transform >> \
                    td.ScopedLayer(modules.TransformModule, name_or_scope='TransformModule')
                # _And
                case_and = td.Record([('input_0', att_expr_decl()),
                                      ('input_1', att_expr_decl()),
                                      ('time_idx', td.Scalar('int32')),
                                      ('batch_idx', td.Scalar('int32'))])
                case_and = case_and >> \
                    td.ScopedLayer(modules.AndModule, name_or_scope='AndModule')

                recursion_cases = td.OneOf(
                    td.GetItem('module'), {
                        '_Find': case_find,
                        '_Transform': case_transform,
                        '_And': case_and
                    })
                att_expr_decl.resolve_to(recursion_cases)
                # _Answer: output scores for choice (for valid expressions)
                predicted_scores = td.Record([('input_0', recursion_cases),
                                              ('time_idx', td.Scalar('int32')),
                                              ('batch_idx', td.Scalar('int32'))
                                              ])
                predicted_scores = predicted_scores >> \
                    td.ScopedLayer(modules.AnswerModule, name_or_scope='AnswerModule')

                # For invalid expressions, define a dummy answer
                # so that all answers have the same form
                INVALID = nmn3_assembler.INVALID_EXPR
                dummy_scores = td.Void() >> td.FromTensor(
                    np.zeros(num_choices, np.float32))
                output_scores = td.OneOf(td.GetItem('module'), {
                    '_Answer': predicted_scores,
                    INVALID: dummy_scores
                })

                # compile and get the output scores
                self.compiler = td.Compiler.create(output_scores)
                self.scores = self.compiler.output_tensors[0]

            # Regularization: Entropy + L2
            self.entropy_reg = tf.reduce_mean(neg_entropy)
            module_weights = [
                v for v in tf.trainable_variables()
                if (scope in v.op.name and v.op.name.endswith('weights'))
            ]
            self.l2_reg = tf.add_n([tf.nn.l2_loss(v) for v in module_weights])