コード例 #1
0
ファイル: train_test.py プロジェクト: Aerochip7/gan
def create_callable_infogan_model():
  return tfgan.infogan_model(
      InfoGANGenerator(),
      InfoGANDiscriminator(),
      real_data=tf.zeros([1, 2]),
      unstructured_generator_inputs=[],
      structured_generator_inputs=[tf.random.normal([1, 2])])
コード例 #2
0
ファイル: train_test.py プロジェクト: Aerochip7/gan
def create_infogan_model():
  return tfgan.infogan_model(
      infogan_generator_model,
      infogan_discriminator_model,
      real_data=tf.zeros([1, 2]),
      unstructured_generator_inputs=[],
      structured_generator_inputs=[tf.random.normal([1, 2])])
コード例 #3
0
ファイル: train_lib.py プロジェクト: zhouyonglong/gan
def train(hparams):
    """Trains an MNIST GAN.

  Args:
    hparams: An HParams instance containing the hyperparameters for training.
  """
    if not tf.io.gfile.exists(hparams.train_log_dir):
        tf.io.gfile.makedirs(hparams.train_log_dir)

    # Force all input processing onto CPU in order to reserve the GPU for
    # the forward inference and back-propagation.
    with tf.name_scope('inputs'), tf.device('/cpu:0'):
        images, one_hot_labels = data_provider.provide_data(
            'train', hparams.batch_size, num_parallel_calls=4)

    # Define the GANModel tuple. Optionally, condition the GAN on the label or
    # use an InfoGAN to learn a latent representation.
    if hparams.gan_type == 'unconditional':
        gan_model = tfgan.gan_model(
            generator_fn=networks.unconditional_generator,
            discriminator_fn=networks.unconditional_discriminator,
            real_data=images,
            generator_inputs=tf.random.normal(
                [hparams.batch_size, hparams.noise_dims]))
    elif hparams.gan_type == 'conditional':
        noise = tf.random.normal([hparams.batch_size, hparams.noise_dims])
        gan_model = tfgan.gan_model(
            generator_fn=networks.conditional_generator,
            discriminator_fn=networks.conditional_discriminator,
            real_data=images,
            generator_inputs=(noise, one_hot_labels))
    elif hparams.gan_type == 'infogan':
        cat_dim, cont_dim = 10, 2
        generator_fn = functools.partial(networks.infogan_generator,
                                         categorical_dim=cat_dim)
        discriminator_fn = functools.partial(networks.infogan_discriminator,
                                             categorical_dim=cat_dim,
                                             continuous_dim=cont_dim)
        unstructured_inputs, structured_inputs = util.get_infogan_noise(
            hparams.batch_size, cat_dim, cont_dim, hparams.noise_dims)
        gan_model = tfgan.infogan_model(
            generator_fn=generator_fn,
            discriminator_fn=discriminator_fn,
            real_data=images,
            unstructured_generator_inputs=unstructured_inputs,
            structured_generator_inputs=structured_inputs)
    tfgan.eval.add_gan_model_image_summaries(gan_model, hparams.grid_size)

    # Get the GANLoss tuple. You can pass a custom function, use one of the
    # already-implemented losses from the losses library, or use the defaults.
    with tf.name_scope('loss'):
        if hparams.gan_type == 'infogan':
            gan_loss = tfgan.gan_loss(
                gan_model,
                generator_loss_fn=tfgan.losses.modified_generator_loss,
                discriminator_loss_fn=tfgan.losses.modified_discriminator_loss,
                mutual_information_penalty_weight=1.0,
                add_summaries=True)
        else:
            gan_loss = tfgan.gan_loss(gan_model, add_summaries=True)
        tfgan.eval.add_regularization_loss_summaries(gan_model)

    # Get the GANTrain ops using custom optimizers.
    with tf.name_scope('train'):
        gen_lr, dis_lr = _learning_rate(hparams.gan_type)
        train_ops = tfgan.gan_train_ops(
            gan_model,
            gan_loss,
            generator_optimizer=tf.train.AdamOptimizer(gen_lr, 0.5),
            discriminator_optimizer=tf.train.AdamOptimizer(dis_lr, 0.5),
            summarize_gradients=True,
            aggregation_method=tf.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N)

    # Run the alternating training loop. Skip it if no steps should be taken
    # (used for graph construction tests).
    status_message = tf.strings.join([
        'Starting train step: ',
        tf.as_string(tf.train.get_or_create_global_step())
    ],
                                     name='status_message')
    if hparams.max_number_of_steps == 0:
        return
    tfgan.gan_train(
        train_ops,
        hooks=[
            tf.estimator.StopAtStepHook(num_steps=hparams.max_number_of_steps),
            tf.estimator.LoggingTensorHook([status_message], every_n_iter=10)
        ],
        logdir=hparams.train_log_dir,
        get_hooks_fn=tfgan.get_joint_train_hooks(),
        save_checkpoint_secs=60)