コード例 #1
0
  def test_from_axis_angle_random(self):
    """Tests converting an axis-angle to a quaternion."""
    random_euler_angles = test_helpers.generate_random_test_euler_angles()

    axis, angle = axis_angle.from_euler(random_euler_angles)
    grountruth = rotation_matrix_3d.from_quaternion(
        quaternion.from_euler(random_euler_angles))
    prediction = rotation_matrix_3d.from_quaternion(
        quaternion.from_axis_angle(axis, angle))

    self.assertAllClose(grountruth, prediction, rtol=1e-3)
コード例 #2
0
  def test_from_rotation_matrix_random(self):
    """Tests that from_rotation_matrix produces the expected quaternions."""
    random_euler_angles = test_helpers.generate_random_test_euler_angles()

    random_rotation_matrix_3d = rotation_matrix_3d.from_euler(
        random_euler_angles)
    groundtruth = rotation_matrix_3d.from_quaternion(
        quaternion.from_euler(random_euler_angles))
    prediction = rotation_matrix_3d.from_quaternion(
        quaternion.from_rotation_matrix(random_rotation_matrix_3d))

    self.assertAllClose(groundtruth, prediction)
コード例 #3
0
    def test_from_quaternion_jacobian_random(self):
        """Test the Jacobian of the from_quaternion function."""
        x_init = test_helpers.generate_random_test_quaternions()
        x = tf.convert_to_tensor(value=x_init)

        y = rotation_matrix_3d.from_quaternion(x)

        self.assert_jacobian_is_correct(x, x_init, y)
コード例 #4
0
  def test_from_quaternion_preset(self):
    """Tests that a quaternion maps to correct matrix."""
    preset_quaternions = test_helpers.generate_preset_test_quaternions()

    preset_matrices = test_helpers.generate_preset_test_rotation_matrices_3d()

    self.assertAllClose(preset_matrices,
                        rotation_matrix_3d.from_quaternion(preset_quaternions))
コード例 #5
0
    def test_from_quaternion_normalized_random(self):
        """Tests that random quaternions can be converted to rotation matrices."""
        random_quaternion = test_helpers.generate_random_test_quaternions()
        tensor_shape = random_quaternion.shape[:-1]

        random_matrix = rotation_matrix_3d.from_quaternion(random_quaternion)

        self.assertAllEqual(rotation_matrix_3d.is_valid(random_matrix),
                            np.ones(tensor_shape + (1, )))
コード例 #6
0
    def test_from_quaternion_normalized_preset(self):
        """Tests that quaternions can be converted to rotation matrices."""
        euler_angles = test_helpers.generate_preset_test_euler_angles()

        quat = quaternion.from_euler(euler_angles)
        matrix_quat = rotation_matrix_3d.from_quaternion(quat)

        self.assertAllEqual(rotation_matrix_3d.is_valid(matrix_quat),
                            np.ones(euler_angles.shape[0:-1] + (1, )))
コード例 #7
0
  def test_from_quaternion_preset(self):
    """Checks that Euler angles can be retrieved from quaternions."""
    preset_euler_angles = test_helpers.generate_preset_test_euler_angles()

    preset_matrix = rotation_matrix_3d.from_euler(preset_euler_angles)
    preset_quaternion = quaternion.from_euler(preset_euler_angles)
    predicted_matrix = rotation_matrix_3d.from_quaternion(preset_quaternion)

    self.assertAllClose(preset_matrix, predicted_matrix, atol=2e-3)
コード例 #8
0
  def test_from_quaternion_random(self):
    """Tests conversion to matrix."""
    random_euler_angles = test_helpers.generate_random_test_euler_angles()

    random_quaternions = quaternion.from_euler(random_euler_angles)
    random_rotation_matrices = rotation_matrix_3d.from_euler(
        random_euler_angles)

    self.assertAllClose(random_rotation_matrices,
                        rotation_matrix_3d.from_quaternion(random_quaternions))
コード例 #9
0
  def test_from_quaternion_gimbal(self, gimbal_configuration):
    """Checks that from_quaternion works when Ry = pi/2 or -pi/2."""
    random_euler_angles = test_helpers.generate_random_test_euler_angles()
    random_euler_angles[..., 1] = gimbal_configuration

    random_quaternion = quaternion.from_euler(random_euler_angles)
    random_matrix = rotation_matrix_3d.from_euler(random_euler_angles)
    reconstructed_random_matrices = rotation_matrix_3d.from_quaternion(
        random_quaternion)

    self.assertAllClose(reconstructed_random_matrices, random_matrix, atol=2e-3)
コード例 #10
0
  def test_rotate_random(self):
    """Tests the rotation using a quaternion vs a rotation matrix."""
    random_quaternion = test_helpers.generate_random_test_quaternions()
    tensor_shape = random_quaternion.shape[:-1]
    random_point = np.random.normal(size=tensor_shape + (3,))

    rotated_point_quaternion = quaternion.rotate(random_point,
                                                 random_quaternion)
    matrix = rotation_matrix_3d.from_quaternion(random_quaternion)
    rotated_point_matrix = rotation_matrix_3d.rotate(random_point, matrix)

    self.assertAllClose(
        rotated_point_matrix, rotated_point_quaternion, rtol=1e-3)
コード例 #11
0
    def _combined_loss_function(self, y_true, y_pred):
        ############################
        # THIS IS A WORK IN PROGRESS
        ############################

        # extract t,R errors
        error = K.square(y_pred[:, 0:7] - y_true[:, 0:7])
        translation_error = K.sqrt(error[0] + error[1] + error[2])
        orientation_quaternion_error = K.sqrt(error[3] + error[4] + error[5] + error[6])

        # extract camera matrices P1,P2
        P1 = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]
        orientation_matrix = rm3.from_quaternion(y_pred[:,3:7])
        P2 = tensorflow.apend(orientation_matrix, translation_error, axis=1)
        P2_1 = P2[1, :]
        P2_2 = P2[2, :]
        P2_3 = P2[3, :]

        K1 = y_pred[:,7:17]
        K1 = tensorflow.reshape(K1,[-1,3,3])
        K2 = y_pred[:, 17:27]
        K2 = tensorflow.reshape(K2, [-1,3, 3])
        x1 = y_pred[:,27:327]
        x1 = tensorflow.reshape(x1,[-1,3,100])
        x2 = y_pred[:,327:627]
        x2 = tensorflow.reshape(x2,[-1,3,100])

        # normalize the given 2D points and cameras
        x1normalized = tensorflow.linalg.inv(K1) * x1
        x2normalized = tensorflow.linalg.inv(K2) * x2
        P1normalized = tensorflow.linalg.inv(K1) * P1
        P2normalized = tensorflow.linalg.inv(K2) * P2

        # Triangulate the 3D points using the two camera matrices and the givehttps://www.mat.univie.ac.at/~gerald/ftp/book-mfi/mfi1.pdfn 2D points
        X = tensorflow.zeros([4, x1.len])  # this is the array of 3D points
        for i in range(x1.len):
            Mi = np.zeros([6, 6])
            Mi[:6, :4] = np.append(P1normalized, P2normalized, axis=0)
            Mi[:, 5] = [[-x1normalized[:, i]], [0], [0], [0]]
            Mi[:, 6] = [[0], [0], [0], -x2normalized[:, i]]
            U, s, VT = svd(Mi)
            solution = VT[:, -1]
            X[:, i] = self.pflat(solution[1:4])

        # sum the reprojection error over all reprojected points relative to given 2D points of camera 2
        reprojection_error = 0
        for j in range(X.size):
            reprojection_error += K.sqrt(
                K.square(x1[j] - (P2_1 * X[j]) / (P2_3 * X[j])) + K.square(x2[j] - (P2_2 * X[j]) / (P2_3 * X[j])))

        return K.mean(translation_error + (self._beta * orientation_quaternion_error) + (self._gamma * reprojection_error))
コード例 #12
0
    def _combined_loss_fucntion2(self, y_true, y_pred):
        # extract t,R errors
        error = K.square(y_pred[:, 0:7] - y_true[:, 0:7])
        translation_error = K.sqrt(error[0] + error[1] + error[2])
        orientation_quaternion_error = K.sqrt(error[3] + error[4] + error[5] + error[6])

        # extract K1,K2, and all point matches from the prediction
        # which were passed through the model
        K1 = y_pred[:,7:16]
        K1 = tensorflow.reshape(K1,[-1,3,3])
        K2 = y_pred[:, 16:25]
        K2 = tensorflow.reshape(K2, [-1,3, 3])
        x1 = y_pred[:,25:325]
        x1 = tensorflow.reshape(x1,[-1,3,100])
        x2 = y_pred[:,325:625]
        x2 = tensorflow.reshape(x2,[-1,3,100])

        # calculate fundamental matrix
        t = y_pred[:,0:3]
        R = rm3.from_quaternion(y_pred[:,3:7])

        # calculate skew matrix by taking the cross product with the normal basis
        # t_skew = [e1xt e2xt e3xt]
        e1 = tensorflow.repeat([1., 0, 0], repeats=1, axis=0)
        e2 = tensorflow.repeat([0, 1., 0], repeats=1, axis=0)
        e3 = tensorflow.repeat([0, 0, 1.], repeats=1, axis=0)

        t_skew = tensorflow.stack([tensorflow.map_fn(lambda x: tensorflow.linalg.cross(x,e1), t),
                                   tensorflow.map_fn(lambda x: tensorflow.linalg.cross(x, e2), t),
                                   tensorflow.map_fn(lambda x: tensorflow.linalg.cross(x, e3), t)], axis=1)


        # Calculate the essential matrix from the prediction
        E = tensorflow.linalg.matmul(t_skew, R)
        K2_Tinv = tensorflow.linalg.inv(tensorflow.transpose(K2,perm=[0,2,1]))
        K1_inv = tensorflow.linalg.inv(K1)

        # Calculate the fundamental matrix
        F = tensorflow.matmul(tensorflow.matmul(K2_Tinv, E), K1_inv)


        # calculate the epipolar constraint error
        step = tensorflow.linalg.matmul(tensorflow.transpose(x1, perm=[0,2,1]), F)
        constraint_error = K.sqrt(tensorflow.math.reduce_sum(K.square(tensorflow.linalg.diag_part(tensorflow.linalg.matmul(step, x2)))))

        return K.mean(translation_error + (self._beta * orientation_quaternion_error) + (self._gamma * constraint_error))
コード例 #13
0
  def test_from_axis_angle_random(self):
    """Tests conversion to matrix."""
    tensor_shape = np.random.randint(1, 10, size=np.random.randint(3)).tolist()
    random_axis = np.random.normal(size=tensor_shape + [3])
    random_axis /= np.linalg.norm(random_axis, axis=-1, keepdims=True)
    random_angle = np.random.normal(size=tensor_shape + [1])

    matrix_axis_angle = rotation_matrix_3d.from_axis_angle(
        random_axis, random_angle)
    random_quaternion = quaternion.from_axis_angle(random_axis, random_angle)
    matrix_quaternion = rotation_matrix_3d.from_quaternion(random_quaternion)

    self.assertAllClose(matrix_axis_angle, matrix_quaternion, rtol=1e-3)
    # Checks that resulting rotation matrices are normalized.
    self.assertAllEqual(
        rotation_matrix_3d.is_valid(matrix_axis_angle),
        np.ones(tensor_shape + [1]))