コード例 #1
0
  def testInputLayer(self):
    with tf.Graph().as_default():
      text_a = tf.SparseTensor(
          values=["hello world", "pair-programming", "hello world"],
          indices=[[0, 0], [0, 1], [1, 0]],
          dense_shape=[2, 2])
      text_b = tf.SparseTensor(
          values=["hello world", "oov token"],
          indices=[[0, 0], [0, 1]],
          dense_shape=[2, 3])

      features = {
          "text_a": text_a,
          "text_b": text_b,
      }
      feature_columns = [
          hub.sparse_text_embedding_column(
              "text_a",
              self.spec,
              combiner="mean",
              default_value="__UNKNOWN__",
              trainable=False),
          hub.sparse_text_embedding_column(
              "text_b",
              self.spec,
              combiner="mean",
              default_value="__UNKNOWN__",
              trainable=False),
      ]
      input_layer = tf_v1.feature_column.input_layer(features, feature_columns)
      with tf_v1.train.MonitoredSession() as sess:
        output = sess.run(input_layer)
        self.assertAllEqual(
            output,
            [[3, 3.5, 4, 4.5, 0.5, 1, 1.5, 2], [1, 2, 3, 4, 0, 0, 0, 0]])
コード例 #2
0
  def testTrainableEmbeddingColumn(self):
    feature_columns = [
        hub.sparse_text_embedding_column(
            "text",
            self.spec,
            combiner="mean",
            default_value=None,
            trainable=True),
    ]

    with tf.Graph().as_default():
      text = tf.SparseTensor(
          values=["hello world", "pair-programming"],
          indices=[[0, 0], [1, 0]],
          dense_shape=[2, 2])

      target = [[1, 1, 1, 1], [4, 3, 2, 1]]
      input_layer = tf_v1.feature_column.input_layer({"text": text},
                                                     feature_columns)

      loss = tf_v1.losses.mean_squared_error(input_layer, target)
      optimizer = tf_v1.train.GradientDescentOptimizer(learning_rate=0.97)
      train_op = optimizer.minimize(loss)

      with tf_v1.train.MonitoredSession() as sess:
        self.assertAllEqual(sess.run(input_layer), [[1, 2, 3, 4], [5, 5, 5, 5]])
        for _ in range(10):
          sess.run(train_op)
        self.assertAllClose(sess.run(input_layer), target, atol=0.5)
コード例 #3
0
ファイル: feature_column_test.py プロジェクト: zoujunrong/hub
    def testEmptySparseTensorBatch(self):
        feature_columns = [
            hub.sparse_text_embedding_column("text",
                                             self.spec,
                                             combiner="mean",
                                             default_value="default",
                                             trainable=True),
        ]

        with tf.Graph().as_default():
            text = tf.SparseTensor(values=tf_v1.constant([],
                                                         dtype=tf_v1.string,
                                                         shape=[0]),
                                   indices=tf_v1.constant([],
                                                          dtype=tf_v1.int64,
                                                          shape=[0, 2]),
                                   dense_shape=[3, 0])

            input_layer = tf_v1.feature_column.input_layer({"text": text},
                                                           feature_columns)

            with tf_v1.train.MonitoredSession() as sess:
                embeddings = sess.run(input_layer)
                self.assertAllEqual(embeddings,
                                    [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])
コード例 #4
0
ファイル: feature_column_test.py プロジェクト: zoujunrong/hub
 def testParents(self):
     text_column = hub.sparse_text_embedding_column("text",
                                                    self.spec,
                                                    "sum",
                                                    "",
                                                    trainable=False)
     self.assertEqual(["text"], text_column.parents)
コード例 #5
0
ファイル: feature_column_test.py プロジェクト: zoujunrong/hub
 def testVariableShape(self):
     text_column = hub.sparse_text_embedding_column("text",
                                                    self.spec,
                                                    combiner="mean",
                                                    default_value=None,
                                                    trainable=False)
     self.assertEqual(text_column._variable_shape, [4])
コード例 #6
0
ファイル: feature_column_test.py プロジェクト: tensorflow/hub
 def testMakeParseExampleSpec(self):
   text_column = hub.sparse_text_embedding_column(
       "text", self.spec, combiner="mean", default_value=None, trainable=False)
   parsing_spec = tf.compat.v1.feature_column.make_parse_example_spec(
       [text_column])
   self.assertEqual(
       parsing_spec, {"text": tf.compat.v1.VarLenFeature(tf.string)})