def test_ignite_dataset_with_plain_client(self): """Test Ignite Dataset with plain client. """ self._clear_env() ds = ignite_io.IgniteDataset(cache_name="SQL_PUBLIC_TEST_CACHE", port=10800) self._check_dataset(ds)
def test_ignite_dataset_with_plain_client(self): """Test Ignite Dataset with plain client.""" tf.compat.v1.disable_eager_execution() import tensorflow_io.ignite as ignite_io self._clear_env() ds = ignite_io.IgniteDataset(cache_name="SQL_PUBLIC_TEST_CACHE", port=10800) self._check_dataset(ds)
def test_ignite_dataset_with_plain_client_with_interleave(self): """Test Ignite Dataset with plain client with interleave. """ self._clear_env() ds = data.Dataset.from_tensor_slices(["localhost"]).interleave( lambda host: ignite_io.IgniteDataset(cache_name="SQL_PUBLIC_TEST_CACHE", schema_host="localhost", host=host, port=42300), cycle_length=4, block_length=16 ) self._check_dataset(ds)
def test_ignite_dataset_with_plain_client_with_interleave(self): """Test Ignite Dataset with plain client with interleave. """ self._clear_env() igds_local = ignite_io.IgniteDataset( cache_name="SQL_PUBLIC_TEST_CACHE", schema_host="localhost", host='localhost', port=10800) # TODO: this is a workaround due to failure to build a TypeSpec for # IgniteDataset in non-eager mode ds = data.Dataset.from_tensor_slices(["localhost"]).interleave( lambda host: igds_local, cycle_length=4, block_length=16) self._check_dataset(ds)