コード例 #1
0
  def testCalibratedRtlMonotonicClassifierTraining(self):
    # Construct the following training/testing pair.
    #
    # Training: (x, y)
    # ([0., 0.], 0.0)
    # ([0., 1.], 1.0)
    # ([1., 0.], 1.0)
    # ([1., 1.], 0.0)
    #
    # Test: (x, y)
    # ([0., 0.], 0.0)
    # ([0., 1.], 1.0)
    # ([1., 0.], 1.0)
    # ([1., 1.], 1.0)
    #
    # Note that training example has a noisy sample, ([1., 1.], 0.0), and test
    # examples are generated by the logical-OR function. Therefore by enforcing
    # increasing monotonicity to all features, we should be able to work well
    # in the test examples.
    x0 = np.array([0.0, 0.0, 1.0, 1.0])
    x1 = np.array([0.0, 1.0, 0.0, 1.0])
    x_samples = {'x0': x0, 'x1': x1}
    training_y = np.array([[False], [True], [True], [False]])
    test_y = np.array([[False], [True], [True], [True]])

    train_input_fn = numpy_io.numpy_input_fn(
        x=x_samples, y=training_y, batch_size=4, num_epochs=1000, shuffle=False)
    test_input_fn = numpy_io.numpy_input_fn(
        x=x_samples, y=test_y, shuffle=False)

    # Define monotonic lattice classifier.
    feature_columns = [
        feature_column_lib.numeric_column('x0'),
        feature_column_lib.numeric_column('x1'),
    ]

    def init_fn():
      return keypoints_initialization.uniform_keypoints_for_signal(
          2, 0., 1., 0., 1.)

    hparams = tfl_hparams.CalibratedRtlHParams(
        num_keypoints=2, num_lattices=3, lattice_rank=2)
    # Monotonic calibrated lattice.

    hparams.set_param('monotonicity', +1)
    hparams.set_param('learning_rate', 0.1)
    hparams.set_param('interpolation_type', 'hypercube')

    estimator = calibrated_rtl.calibrated_rtl_classifier(
        feature_columns=feature_columns,
        hparams=hparams,
        keypoints_initializers_fn=init_fn)

    estimator.train(input_fn=train_input_fn)
    results = estimator.evaluate(input_fn=test_input_fn)
    # We should expect 1.0 accuracy.
    self.assertGreater(results['accuracy'], 0.999)
コード例 #2
0
 def setUp(self):
     self.hparams = tfl_hparams.CalibratedRtlHParams(feature_names=['x'])
     self.hparams.set_param('lattice_size', 2)
     self.hparams.set_param('calibrator_output_min', 0)
     self.hparams.set_param('calibrator_output_max', 1)
     self.hparams.set_param('calibration_bound', True)
     self.hparams.set_param('lattice_rank', 2)
     self.hparams.set_param('num_lattices', 10)
     self.empty_estimator = calibrated_rtl.calibrated_rtl_classifier(
         hparams=self.hparams)
コード例 #3
0
    def _CalibratedRtlClassifier(self,
                                 feature_columns,
                                 num_lattices=1,
                                 lattice_rank=1,
                                 **hparams_args):
        def init_fn():
            return keypoints_initialization.uniform_keypoints_for_signal(
                _NUM_KEYPOINTS, -1., 1., 0., 1.)

        hparams = tfl_hparams.CalibratedRtlHParams(
            num_keypoints=_NUM_KEYPOINTS,
            num_lattices=num_lattices,
            lattice_rank=lattice_rank,
            **hparams_args)
        # Turn off monotonic calibrator.
        hparams.set_param('calibration_monotonic', None)
        hparams.set_param('learning_rate', 0.1)

        return calibrated_rtl.calibrated_rtl_classifier(
            feature_columns=feature_columns,
            hparams=hparams,
            keypoints_initializers_fn=init_fn)