コード例 #1
0
def _create_sub_keys(
    spec: config.MetricsSpec
) -> Dict[Optional[metric_types.AggregationType],
          List[Optional[metric_types.SubKey]]]:
  """Creates sub keys per aggregation type."""
  result = {}
  if spec.HasField('binarize'):
    sub_keys = []
    if spec.binarize.class_ids.values:
      for v in spec.binarize.class_ids.values:
        sub_keys.append(metric_types.SubKey(class_id=v))
    if spec.binarize.k_list.values:
      for v in spec.binarize.k_list.values:
        sub_keys.append(metric_types.SubKey(k=v))
    if spec.binarize.top_k_list.values:
      for v in spec.binarize.top_k_list.values:
        sub_keys.append(metric_types.SubKey(top_k=v))
    if sub_keys:
      result[None] = sub_keys
  if spec.HasField('aggregate'):
    sub_keys = []
    for top_k in spec.aggregate.top_k_list.values:
      sub_keys.append(metric_types.SubKey(top_k=top_k))
    if not sub_keys:
      sub_keys = [None]
    result[_aggregation_type(spec)] = sub_keys
  return result if result else {None: [None]}
コード例 #2
0
def _create_sub_keys(
        spec: config.MetricsSpec) -> Optional[List[metric_types.SubKey]]:
    """Creates subkeys associated with spec."""
    sub_keys = None
    if spec.HasField('binarize'):
        sub_keys = []
        if spec.binarize.class_ids.values:
            for v in spec.binarize.class_ids.values:
                sub_keys.append(metric_types.SubKey(class_id=v))
        if spec.binarize.k_list.values:
            for v in spec.binarize.k_list.values:
                sub_keys.append(metric_types.SubKey(k=v))
        if spec.binarize.top_k_list.values:
            for v in spec.binarize.top_k_list.values:
                sub_keys.append(metric_types.SubKey(top_k=v))
        if spec.aggregate.micro_average:
            # Micro averaging is performed by flattening the labels and predictions
            # and treating them as independent pairs. This is done by default by most
            # metrics whenever binarization is not used. If micro-averaging and
            # binarization are used, then we need to create an empty subkey to ensure
            # the overall aggregate key is still computed. Note that the class_weights
            # should always be passed to all metric calculations to ensure they are
            # taken into account when flattening is required.
            sub_keys.append(None)
    return sub_keys  # pytype: disable=bad-return-type
コード例 #3
0
def _create_sub_keys(
        spec: config.MetricsSpec) -> Optional[List[metric_types.SubKey]]:
    """Creates subkeys associated with spec."""
    sub_keys = None
    if spec.HasField('binarize'):
        sub_keys = []
        if spec.binarize.class_ids:
            for v in spec.binarize.class_ids:
                sub_keys.append(metric_types.SubKey(class_id=v))
        if spec.binarize.k_list:
            for v in spec.binarize.k_list:
                sub_keys.append(metric_types.SubKey(k=v))
        if spec.binarize.top_k_list:
            for v in spec.binarize.top_k_list:
                sub_keys.append(metric_types.SubKey(top_k=v))
    return sub_keys