def Do(self, input_dict: Dict[Text, List[types.Artifact]], output_dict: Dict[Text, List[types.Artifact]], exec_properties: Dict[Text, Any]) -> None: """Runs a batch job to evaluate the eval_model against the given input. Args: input_dict: Input dict from input key to a list of Artifacts. - model_exports: exported model. - examples: examples for eval the model. output_dict: Output dict from output key to a list of Artifacts. - output: model evaluation results. exec_properties: A dict of execution properties. - eval_config: JSON string of tfma.EvalConfig. - feature_slicing_spec: JSON string of evaluator_pb2.FeatureSlicingSpec instance, providing the way to slice the data. Deprecated, use eval_config.slicing_specs instead. Returns: None """ if constants.EXAMPLES_KEY not in input_dict: raise ValueError('EXAMPLES_KEY is missing from input dict.') if constants.MODEL_KEY not in input_dict: raise ValueError('MODEL_KEY is missing from input dict.') if constants.EVALUATION_KEY not in output_dict: raise ValueError('EVALUATION_KEY is missing from output dict.') if len(input_dict[constants.MODEL_KEY]) > 1: raise ValueError( 'There can be only one candidate model, there are {}.'.format( len(input_dict[constants.MODEL_KEY]))) if constants.BASELINE_MODEL_KEY in input_dict and len( input_dict[constants.BASELINE_MODEL_KEY]) > 1: raise ValueError( 'There can be only one baseline model, there are {}.'.format( len(input_dict[constants.BASELINE_MODEL_KEY]))) self._log_startup(input_dict, output_dict, exec_properties) # Add fairness indicator metric callback if necessary. fairness_indicator_thresholds = exec_properties.get( 'fairness_indicator_thresholds', None) add_metrics_callbacks = None if fairness_indicator_thresholds: # Need to import the following module so that the fairness indicator # post-export metric is registered. import tensorflow_model_analysis.addons.fairness.post_export_metrics.fairness_indicators # pylint: disable=g-import-not-at-top, unused-variable add_metrics_callbacks = [ tfma.post_export_metrics.fairness_indicators( # pytype: disable=module-attr thresholds=fairness_indicator_thresholds), ] output_uri = artifact_utils.get_single_uri( output_dict[constants.EVALUATION_KEY]) run_validation = False models = [] if 'eval_config' in exec_properties and exec_properties['eval_config']: slice_spec = None has_baseline = bool(input_dict.get(constants.BASELINE_MODEL_KEY)) eval_config = tfma.EvalConfig() json_format.Parse(exec_properties['eval_config'], eval_config) eval_config = tfma.update_eval_config_with_defaults( eval_config, maybe_add_baseline=has_baseline, maybe_remove_baseline=not has_baseline) tfma.verify_eval_config(eval_config) # Do not validate model when there is no thresholds configured. This is to # avoid accidentally blessing models when users forget to set thresholds. run_validation = bool( tfma.metrics.metric_thresholds_from_metrics_specs( eval_config.metrics_specs)) if len(eval_config.model_specs) > 2: raise ValueError( """Cannot support more than two models. There are {} models in this eval_config.""".format(len(eval_config.model_specs))) # Extract model artifacts. for model_spec in eval_config.model_specs: if model_spec.is_baseline: model_uri = artifact_utils.get_single_uri( input_dict[constants.BASELINE_MODEL_KEY]) else: model_uri = artifact_utils.get_single_uri( input_dict[constants.MODEL_KEY]) if tfma.get_model_type(model_spec) == tfma.TF_ESTIMATOR: model_path = path_utils.eval_model_path(model_uri) else: model_path = path_utils.serving_model_path(model_uri) absl.logging.info('Using {} as {} model.'.format( model_path, model_spec.name)) models.append( tfma.default_eval_shared_model( model_name=model_spec.name, eval_saved_model_path=model_path, add_metrics_callbacks=add_metrics_callbacks, eval_config=eval_config)) else: eval_config = None assert ('feature_slicing_spec' in exec_properties and exec_properties['feature_slicing_spec'] ), 'both eval_config and feature_slicing_spec are unset.' feature_slicing_spec = evaluator_pb2.FeatureSlicingSpec() json_format.Parse(exec_properties['feature_slicing_spec'], feature_slicing_spec) slice_spec = self._get_slice_spec_from_feature_slicing_spec( feature_slicing_spec) model_uri = artifact_utils.get_single_uri( input_dict[constants.MODEL_KEY]) model_path = path_utils.eval_model_path(model_uri) absl.logging.info('Using {} for model eval.'.format(model_path)) models.append( tfma.default_eval_shared_model( eval_saved_model_path=model_path, add_metrics_callbacks=add_metrics_callbacks)) file_pattern = io_utils.all_files_pattern( artifact_utils.get_split_uri(input_dict[constants.EXAMPLES_KEY], 'eval')) eval_shared_model = models[0] if len(models) == 1 else models schema = None if constants.SCHEMA_KEY in input_dict: schema = io_utils.SchemaReader().read( io_utils.get_only_uri_in_dir( artifact_utils.get_single_uri( input_dict[constants.SCHEMA_KEY]))) absl.logging.info('Evaluating model.') with self._make_beam_pipeline() as pipeline: # pylint: disable=expression-not-assigned if _USE_TFXIO: tensor_adapter_config = None if tfma.is_batched_input(eval_shared_model, eval_config): tfxio = tf_example_record.TFExampleRecord( file_pattern=file_pattern, schema=schema, raw_record_column_name=tfma.BATCHED_INPUT_KEY) if schema is not None: tensor_adapter_config = tensor_adapter.TensorAdapterConfig( arrow_schema=tfxio.ArrowSchema(), tensor_representations=tfxio.TensorRepresentations( )) data = pipeline | 'ReadFromTFRecordToArrow' >> tfxio.BeamSource( ) else: data = pipeline | 'ReadFromTFRecord' >> beam.io.ReadFromTFRecord( file_pattern=file_pattern) (data | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=models[0] if len(models) == 1 else models, eval_config=eval_config, output_path=output_uri, slice_spec=slice_spec, tensor_adapter_config=tensor_adapter_config)) else: data = pipeline | 'ReadFromTFRecord' >> beam.io.ReadFromTFRecord( file_pattern=file_pattern) (data | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=models[0] if len(models) == 1 else models, eval_config=eval_config, output_path=output_uri, slice_spec=slice_spec)) absl.logging.info( 'Evaluation complete. Results written to {}.'.format(output_uri)) if not run_validation: # TODO(jinhuang): delete the BLESSING_KEY from output_dict when supported. absl.logging.info( 'No threshold configured, will not validate model.') return # Set up blessing artifact blessing = artifact_utils.get_single_instance( output_dict[constants.BLESSING_KEY]) blessing.set_string_custom_property( constants.ARTIFACT_PROPERTY_CURRENT_MODEL_URI_KEY, artifact_utils.get_single_uri(input_dict[constants.MODEL_KEY])) blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_CURRENT_MODEL_ID_KEY, input_dict[constants.MODEL_KEY][0].id) if input_dict.get(constants.BASELINE_MODEL_KEY): baseline_model = input_dict[constants.BASELINE_MODEL_KEY][0] blessing.set_string_custom_property( constants.ARTIFACT_PROPERTY_BASELINE_MODEL_URI_KEY, baseline_model.uri) blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BASELINE_MODEL_ID_KEY, baseline_model.id) if 'current_component_id' in exec_properties: blessing.set_string_custom_property( 'component_id', exec_properties['current_component_id']) # Check validation result and write BLESSED file accordingly. absl.logging.info('Checking validation results.') validation_result = tfma.load_validation_result(output_uri) if validation_result.validation_ok: io_utils.write_string_file( os.path.join(blessing.uri, constants.BLESSED_FILE_NAME), '') blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BLESSED_KEY, constants.BLESSED_VALUE) else: io_utils.write_string_file( os.path.join(blessing.uri, constants.NOT_BLESSED_FILE_NAME), '') blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BLESSED_KEY, constants.NOT_BLESSED_VALUE) absl.logging.info('Blessing result {} written to {}.'.format( validation_result.validation_ok, blessing.uri))
def Do(self, input_dict: Dict[Text, List[types.Artifact]], output_dict: Dict[Text, List[types.Artifact]], exec_properties: Dict[Text, Any]) -> None: # Check the inputs if constants.EXAMPLES not in input_dict: raise ValueError(f'{constants.EXAMPLES} is missing from inputs') examples_artifact = input_dict[constants.EXAMPLES] input_uri = artifact_utils.get_single_uri(examples_artifact) if len(zenml_path_utils.list_dir(input_uri)) == 0: raise AssertionError( 'ZenML can not run the evaluation as the provided input ' 'configuration does not point towards any data. Specifically, ' 'if you are using the agnostic evaluator, please make sure ' 'that you are using a proper test_fn in your trainer step to ' 'write these results.') else: # Check the outputs if constants.EVALUATION not in output_dict: raise ValueError( f'{constants.EVALUATION} is missing from outputs') evaluation_artifact = output_dict[constants.EVALUATION] output_uri = artifact_utils.get_single_uri(evaluation_artifact) # Resolve the schema schema = None if constants.SCHEMA in input_dict: schema_artifact = input_dict[constants.SCHEMA] schema_uri = artifact_utils.get_single_uri(schema_artifact) reader = io_utils.SchemaReader() schema = reader.read(io_utils.get_only_uri_in_dir(schema_uri)) # Create the step with the schema attached if provided source = exec_properties[StepKeys.SOURCE] args = exec_properties[StepKeys.ARGS] c = source_utils.load_source_path_class(source) evaluator_step: BaseEvaluatorStep = c(**args) # Check the execution parameters eval_config = evaluator_step.build_config() eval_config = tfma.update_eval_config_with_defaults(eval_config) tfma.verify_eval_config(eval_config) # Resolve the model if constants.MODEL in input_dict: model_artifact = input_dict[constants.MODEL] model_uri = artifact_utils.get_single_uri(model_artifact) model_path = path_utils.serving_model_path(model_uri) model_fn = try_get_fn(evaluator_step.CUSTOM_MODULE, 'custom_eval_shared_model' ) or tfma.default_eval_shared_model eval_shared_model = model_fn( model_name='', # TODO: Fix with model names eval_saved_model_path=model_path, eval_config=eval_config) else: eval_shared_model = None self._log_startup(input_dict, output_dict, exec_properties) # Main pipeline logging.info('Evaluating model.') with self._make_beam_pipeline() as pipeline: examples_list = [] tensor_adapter_config = None if tfma.is_batched_input(eval_shared_model, eval_config): tfxio_factory = tfxio_utils.get_tfxio_factory_from_artifact( examples=[ artifact_utils.get_single_instance( examples_artifact) ], telemetry_descriptors=_TELEMETRY_DESCRIPTORS, schema=schema, raw_record_column_name=tfma_constants. ARROW_INPUT_COLUMN) for split in evaluator_step.splits: file_pattern = io_utils.all_files_pattern( artifact_utils.get_split_uri( examples_artifact, split)) tfxio = tfxio_factory(file_pattern) data = (pipeline | 'ReadFromTFRecordToArrow[%s]' % split >> tfxio.BeamSource()) examples_list.append(data) if schema is not None: tensor_adapter_config = tensor_adapter.TensorAdapterConfig( arrow_schema=tfxio.ArrowSchema(), tensor_representations=tfxio.TensorRepresentations( )) else: for split in evaluator_step.splits: file_pattern = io_utils.all_files_pattern( artifact_utils.get_split_uri( examples_artifact, split)) data = (pipeline | 'ReadFromTFRecord[%s]' % split >> beam.io. ReadFromTFRecord(file_pattern=file_pattern)) examples_list.append(data) # Resolve custom extractors custom_extractors = try_get_fn(evaluator_step.CUSTOM_MODULE, 'custom_extractors') extractors = None if custom_extractors: extractors = custom_extractors( eval_shared_model=eval_shared_model, eval_config=eval_config, tensor_adapter_config=tensor_adapter_config) # Resolve custom evaluators custom_evaluators = try_get_fn(evaluator_step.CUSTOM_MODULE, 'custom_evaluators') evaluators = None if custom_evaluators: evaluators = custom_evaluators( eval_shared_model=eval_shared_model, eval_config=eval_config, tensor_adapter_config=tensor_adapter_config) # Extract, evaluate and write (examples_list | 'FlattenExamples' >> beam.Flatten() | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_config=eval_config, eval_shared_model=eval_shared_model, output_path=output_uri, extractors=extractors, evaluators=evaluators, tensor_adapter_config=tensor_adapter_config)) logging.info('Evaluation complete. Results written to %s.', output_uri)
def Do(self, input_dict: Dict[Text, List[types.Artifact]], output_dict: Dict[Text, List[types.Artifact]], exec_properties: Dict[Text, Any]) -> None: """Runs a batch job to evaluate the eval_model against the given input. Args: input_dict: Input dict from input key to a list of Artifacts. - model_exports: exported model. - examples: examples for eval the model. output_dict: Output dict from output key to a list of Artifacts. - output: model evaluation results. exec_properties: A dict of execution properties. - eval_config: JSON string of tfma.EvalConfig. - feature_slicing_spec: JSON string of evaluator_pb2.FeatureSlicingSpec instance, providing the way to slice the data. Deprecated, use eval_config.slicing_specs instead. - example_splits: JSON-serialized list of names of splits on which the metrics are computed. Default behavior (when example_splits is set to None) is using the 'eval' split. Returns: None """ if constants.EXAMPLES_KEY not in input_dict: raise ValueError('EXAMPLES_KEY is missing from input dict.') if constants.MODEL_KEY not in input_dict: raise ValueError('MODEL_KEY is missing from input dict.') if constants.EVALUATION_KEY not in output_dict: raise ValueError('EVALUATION_KEY is missing from output dict.') if len(input_dict[constants.MODEL_KEY]) > 1: raise ValueError( 'There can be only one candidate model, there are %d.' % (len(input_dict[constants.MODEL_KEY]))) if constants.BASELINE_MODEL_KEY in input_dict and len( input_dict[constants.BASELINE_MODEL_KEY]) > 1: raise ValueError( 'There can be only one baseline model, there are %d.' % (len(input_dict[constants.BASELINE_MODEL_KEY]))) self._log_startup(input_dict, output_dict, exec_properties) # Add fairness indicator metric callback if necessary. fairness_indicator_thresholds = exec_properties.get( 'fairness_indicator_thresholds', None) add_metrics_callbacks = None if fairness_indicator_thresholds: add_metrics_callbacks = [ tfma.post_export_metrics.fairness_indicators( # pytype: disable=module-attr thresholds=fairness_indicator_thresholds), ] output_uri = artifact_utils.get_single_uri( output_dict[constants.EVALUATION_KEY]) eval_shared_model_fn = udf_utils.try_get_fn( exec_properties=exec_properties, fn_name='custom_eval_shared_model' ) or tfma.default_eval_shared_model run_validation = False models = [] if 'eval_config' in exec_properties and exec_properties['eval_config']: slice_spec = None has_baseline = bool(input_dict.get(constants.BASELINE_MODEL_KEY)) eval_config = tfma.EvalConfig() json_format.Parse(exec_properties['eval_config'], eval_config) eval_config = tfma.update_eval_config_with_defaults( eval_config, maybe_add_baseline=has_baseline, maybe_remove_baseline=not has_baseline) tfma.verify_eval_config(eval_config) # Do not validate model when there is no thresholds configured. This is to # avoid accidentally blessing models when users forget to set thresholds. run_validation = bool( tfma.metrics.metric_thresholds_from_metrics_specs( eval_config.metrics_specs)) if len(eval_config.model_specs) > 2: raise ValueError( """Cannot support more than two models. There are %d models in this eval_config.""" % (len(eval_config.model_specs))) # Extract model artifacts. for model_spec in eval_config.model_specs: if model_spec.is_baseline: model_uri = artifact_utils.get_single_uri( input_dict[constants.BASELINE_MODEL_KEY]) else: model_uri = artifact_utils.get_single_uri( input_dict[constants.MODEL_KEY]) if tfma.get_model_type(model_spec) == tfma.TF_ESTIMATOR: model_path = path_utils.eval_model_path(model_uri) else: model_path = path_utils.serving_model_path(model_uri) logging.info('Using %s as %s model.', model_path, model_spec.name) models.append( eval_shared_model_fn( eval_saved_model_path=model_path, model_name=model_spec.name, eval_config=eval_config, add_metrics_callbacks=add_metrics_callbacks)) else: eval_config = None assert ('feature_slicing_spec' in exec_properties and exec_properties['feature_slicing_spec'] ), 'both eval_config and feature_slicing_spec are unset.' feature_slicing_spec = evaluator_pb2.FeatureSlicingSpec() json_format.Parse(exec_properties['feature_slicing_spec'], feature_slicing_spec) slice_spec = self._get_slice_spec_from_feature_slicing_spec( feature_slicing_spec) model_uri = artifact_utils.get_single_uri( input_dict[constants.MODEL_KEY]) model_path = path_utils.eval_model_path(model_uri) logging.info('Using %s for model eval.', model_path) models.append( eval_shared_model_fn( eval_saved_model_path=model_path, model_name='', eval_config=None, add_metrics_callbacks=add_metrics_callbacks)) eval_shared_model = models[0] if len(models) == 1 else models schema = None if constants.SCHEMA_KEY in input_dict: schema = io_utils.SchemaReader().read( io_utils.get_only_uri_in_dir( artifact_utils.get_single_uri( input_dict[constants.SCHEMA_KEY]))) # Load and deserialize example splits from execution properties. example_splits = json_utils.loads( exec_properties.get(constants.EXAMPLE_SPLITS_KEY, 'null')) if not example_splits: example_splits = ['eval'] logging.info( "The 'example_splits' parameter is not set, using 'eval' " 'split.') logging.info('Evaluating model.') with self._make_beam_pipeline() as pipeline: examples_list = [] tensor_adapter_config = None # pylint: disable=expression-not-assigned if _USE_TFXIO and tfma.is_batched_input(eval_shared_model, eval_config): tfxio_factory = tfxio_utils.get_tfxio_factory_from_artifact( examples=[ artifact_utils.get_single_instance( input_dict[constants.EXAMPLES_KEY]) ], telemetry_descriptors=_TELEMETRY_DESCRIPTORS, schema=schema, raw_record_column_name=tfma_constants.ARROW_INPUT_COLUMN) # TODO(b/161935932): refactor after TFXIO supports multiple patterns. for split in example_splits: file_pattern = io_utils.all_files_pattern( artifact_utils.get_split_uri( input_dict[constants.EXAMPLES_KEY], split)) tfxio = tfxio_factory(file_pattern) data = (pipeline | 'ReadFromTFRecordToArrow[%s]' % split >> tfxio.BeamSource()) examples_list.append(data) if schema is not None: # Use last tfxio as TensorRepresentations and ArrowSchema are fixed. tensor_adapter_config = tensor_adapter.TensorAdapterConfig( arrow_schema=tfxio.ArrowSchema(), tensor_representations=tfxio.TensorRepresentations()) else: for split in example_splits: file_pattern = io_utils.all_files_pattern( artifact_utils.get_split_uri( input_dict[constants.EXAMPLES_KEY], split)) data = ( pipeline | 'ReadFromTFRecord[%s]' % split >> beam.io.ReadFromTFRecord(file_pattern=file_pattern)) examples_list.append(data) custom_extractors = udf_utils.try_get_fn( exec_properties=exec_properties, fn_name='custom_extractors') extractors = None if custom_extractors: extractors = custom_extractors( eval_shared_model=eval_shared_model, eval_config=eval_config, tensor_adapter_config=tensor_adapter_config) (examples_list | 'FlattenExamples' >> beam.Flatten() | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=models[0] if len(models) == 1 else models, eval_config=eval_config, extractors=extractors, output_path=output_uri, slice_spec=slice_spec, tensor_adapter_config=tensor_adapter_config)) logging.info('Evaluation complete. Results written to %s.', output_uri) if not run_validation: # TODO(jinhuang): delete the BLESSING_KEY from output_dict when supported. logging.info('No threshold configured, will not validate model.') return # Set up blessing artifact blessing = artifact_utils.get_single_instance( output_dict[constants.BLESSING_KEY]) blessing.set_string_custom_property( constants.ARTIFACT_PROPERTY_CURRENT_MODEL_URI_KEY, artifact_utils.get_single_uri(input_dict[constants.MODEL_KEY])) blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_CURRENT_MODEL_ID_KEY, input_dict[constants.MODEL_KEY][0].id) if input_dict.get(constants.BASELINE_MODEL_KEY): baseline_model = input_dict[constants.BASELINE_MODEL_KEY][0] blessing.set_string_custom_property( constants.ARTIFACT_PROPERTY_BASELINE_MODEL_URI_KEY, baseline_model.uri) blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BASELINE_MODEL_ID_KEY, baseline_model.id) if 'current_component_id' in exec_properties: blessing.set_string_custom_property( 'component_id', exec_properties['current_component_id']) # Check validation result and write BLESSED file accordingly. logging.info('Checking validation results.') validation_result = tfma.load_validation_result(output_uri) if validation_result.validation_ok: io_utils.write_string_file( os.path.join(blessing.uri, constants.BLESSED_FILE_NAME), '') blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BLESSED_KEY, constants.BLESSED_VALUE) else: io_utils.write_string_file( os.path.join(blessing.uri, constants.NOT_BLESSED_FILE_NAME), '') blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BLESSED_KEY, constants.NOT_BLESSED_VALUE) logging.info('Blessing result %s written to %s.', validation_result.validation_ok, blessing.uri)
def Do(self, input_dict: Dict[str, List[types.Artifact]], output_dict: Dict[str, List[types.Artifact]], exec_properties: Dict[str, Any]) -> None: """Runs a batch job to evaluate the eval_model against the given input. Args: input_dict: Input dict from input key to a list of Artifacts. - model: exported model. - examples: examples for eval the model. output_dict: Output dict from output key to a list of Artifacts. - evaluation: model evaluation results. exec_properties: A dict of execution properties. - eval_config: JSON string of tfma.EvalConfig. - feature_slicing_spec: JSON string of evaluator_pb2.FeatureSlicingSpec instance, providing the way to slice the data. Deprecated, use eval_config.slicing_specs instead. - example_splits: JSON-serialized list of names of splits on which the metrics are computed. Default behavior (when example_splits is set to None) is using the 'eval' split. Returns: None """ if standard_component_specs.EXAMPLES_KEY not in input_dict: raise ValueError('EXAMPLES_KEY is missing from input dict.') if standard_component_specs.EVALUATION_KEY not in output_dict: raise ValueError('EVALUATION_KEY is missing from output dict.') if standard_component_specs.MODEL_KEY in input_dict and len( input_dict[standard_component_specs.MODEL_KEY]) > 1: raise ValueError('There can be only one candidate model, there are %d.' % (len(input_dict[standard_component_specs.MODEL_KEY]))) if standard_component_specs.BASELINE_MODEL_KEY in input_dict and len( input_dict[standard_component_specs.BASELINE_MODEL_KEY]) > 1: raise ValueError( 'There can be only one baseline model, there are %d.' % (len(input_dict[standard_component_specs.BASELINE_MODEL_KEY]))) self._log_startup(input_dict, output_dict, exec_properties) # Add fairness indicator metric callback if necessary. fairness_indicator_thresholds = json_utils.loads( exec_properties.get( standard_component_specs.FAIRNESS_INDICATOR_THRESHOLDS_KEY, 'null')) add_metrics_callbacks = None if fairness_indicator_thresholds: add_metrics_callbacks = [ tfma.post_export_metrics.fairness_indicators( # pytype: disable=module-attr thresholds=fairness_indicator_thresholds), ] output_uri = artifact_utils.get_single_uri( output_dict[constants.EVALUATION_KEY]) # Make sure user packages get propagated to the remote Beam worker. unused_module_path, extra_pip_packages = udf_utils.decode_user_module_key( exec_properties.get(standard_component_specs.MODULE_PATH_KEY, None)) for pip_package_path in extra_pip_packages: local_pip_package_path = io_utils.ensure_local(pip_package_path) self._beam_pipeline_args.append('--extra_package=%s' % local_pip_package_path) eval_shared_model_fn = udf_utils.try_get_fn( exec_properties=exec_properties, fn_name='custom_eval_shared_model') or tfma.default_eval_shared_model run_validation = False models = [] if (standard_component_specs.EVAL_CONFIG_KEY in exec_properties and exec_properties[standard_component_specs.EVAL_CONFIG_KEY]): slice_spec = None has_baseline = bool( input_dict.get(standard_component_specs.BASELINE_MODEL_KEY)) eval_config = tfma.EvalConfig() proto_utils.json_to_proto( exec_properties[standard_component_specs.EVAL_CONFIG_KEY], eval_config) # rubber_stamp is always assumed true, i.e., change threshold will always # be ignored when a baseline model is missing. if hasattr(tfma, 'utils'): eval_config = tfma.utils.update_eval_config_with_defaults( eval_config, has_baseline=has_baseline, rubber_stamp=True) tfma.utils.verify_eval_config(eval_config) else: # TODO(b/171992041): Replaced by tfma.utils. eval_config = tfma.update_eval_config_with_defaults( eval_config, has_baseline=has_baseline, rubber_stamp=True) tfma.verify_eval_config(eval_config) # Do not validate model when there is no thresholds configured. This is to # avoid accidentally blessing models when users forget to set thresholds. run_validation = bool( tfma.metrics.metric_thresholds_from_metrics_specs( eval_config.metrics_specs, eval_config=eval_config)) if len(eval_config.model_specs) > 2: raise ValueError( """Cannot support more than two models. There are %d models in this eval_config.""" % (len(eval_config.model_specs))) # Extract model artifacts. for model_spec in eval_config.model_specs: if standard_component_specs.MODEL_KEY not in input_dict: if not model_spec.prediction_key: raise ValueError( 'model_spec.prediction_key required if model not provided') continue if model_spec.is_baseline: model_artifact = artifact_utils.get_single_instance( input_dict[standard_component_specs.BASELINE_MODEL_KEY]) else: model_artifact = artifact_utils.get_single_instance( input_dict[standard_component_specs.MODEL_KEY]) # TODO(b/171992041): tfma.get_model_type replaced by tfma.utils. if ((hasattr(tfma, 'utils') and tfma.utils.get_model_type(model_spec) == tfma.TF_ESTIMATOR) or hasattr(tfma, 'get_model_type') and tfma.get_model_type(model_spec) == tfma.TF_ESTIMATOR): model_path = path_utils.eval_model_path( model_artifact.uri, path_utils.is_old_model_artifact(model_artifact)) else: model_path = path_utils.serving_model_path( model_artifact.uri, path_utils.is_old_model_artifact(model_artifact)) logging.info('Using %s as %s model.', model_path, model_spec.name) models.append( eval_shared_model_fn( eval_saved_model_path=model_path, model_name=model_spec.name, eval_config=eval_config, add_metrics_callbacks=add_metrics_callbacks)) else: eval_config = None assert (standard_component_specs.FEATURE_SLICING_SPEC_KEY in exec_properties and exec_properties[standard_component_specs.FEATURE_SLICING_SPEC_KEY] ), 'both eval_config and feature_slicing_spec are unset.' feature_slicing_spec = evaluator_pb2.FeatureSlicingSpec() proto_utils.json_to_proto( exec_properties[standard_component_specs.FEATURE_SLICING_SPEC_KEY], feature_slicing_spec) slice_spec = self._get_slice_spec_from_feature_slicing_spec( feature_slicing_spec) model_artifact = artifact_utils.get_single_instance( input_dict[standard_component_specs.MODEL_KEY]) model_path = path_utils.eval_model_path( model_artifact.uri, path_utils.is_old_model_artifact(model_artifact)) logging.info('Using %s for model eval.', model_path) models.append( eval_shared_model_fn( eval_saved_model_path=model_path, model_name='', eval_config=None, add_metrics_callbacks=add_metrics_callbacks)) eval_shared_model = models[0] if len(models) == 1 else models schema = None if standard_component_specs.SCHEMA_KEY in input_dict: schema = io_utils.SchemaReader().read( io_utils.get_only_uri_in_dir( artifact_utils.get_single_uri( input_dict[standard_component_specs.SCHEMA_KEY]))) # Load and deserialize example splits from execution properties. example_splits = json_utils.loads( exec_properties.get(standard_component_specs.EXAMPLE_SPLITS_KEY, 'null')) if not example_splits: example_splits = ['eval'] logging.info("The 'example_splits' parameter is not set, using 'eval' " 'split.') logging.info('Evaluating model.') # TempPipInstallContext is needed here so that subprocesses (which # may be created by the Beam multi-process DirectRunner) can find the # needed dependencies. # TODO(b/187122662): Move this to the ExecutorOperator or Launcher. with udf_utils.TempPipInstallContext(extra_pip_packages): with self._make_beam_pipeline() as pipeline: examples_list = [] tensor_adapter_config = None # pylint: disable=expression-not-assigned if tfma.is_batched_input(eval_shared_model, eval_config): tfxio_factory = tfxio_utils.get_tfxio_factory_from_artifact( examples=input_dict[standard_component_specs.EXAMPLES_KEY], telemetry_descriptors=_TELEMETRY_DESCRIPTORS, schema=schema, raw_record_column_name=tfma_constants.ARROW_INPUT_COLUMN) # TODO(b/161935932): refactor after TFXIO supports multiple patterns. for split in example_splits: split_uris = artifact_utils.get_split_uris( input_dict[standard_component_specs.EXAMPLES_KEY], split) for index in range(len(split_uris)): split_uri = split_uris[index] file_pattern = io_utils.all_files_pattern(split_uri) tfxio = tfxio_factory(file_pattern) data = ( pipeline | f'ReadFromTFRecordToArrow[{split}][{index}]' >> tfxio.BeamSource()) examples_list.append(data) if schema is not None: # Use last tfxio as TensorRepresentations and ArrowSchema are fixed. tensor_adapter_config = tensor_adapter.TensorAdapterConfig( arrow_schema=tfxio.ArrowSchema(), tensor_representations=tfxio.TensorRepresentations()) else: for split in example_splits: split_uris = artifact_utils.get_split_uris( input_dict[standard_component_specs.EXAMPLES_KEY], split) for index in range(len(split_uris)): split_uri = split_uris[index] file_pattern = io_utils.all_files_pattern(split_uri) data = ( pipeline | f'ReadFromTFRecord[{split}][{index}]' >> beam.io.ReadFromTFRecord(file_pattern=file_pattern)) examples_list.append(data) custom_extractors = udf_utils.try_get_fn( exec_properties=exec_properties, fn_name='custom_extractors') extractors = None if custom_extractors: extractors = custom_extractors( eval_shared_model=eval_shared_model, eval_config=eval_config, tensor_adapter_config=tensor_adapter_config) (examples_list | 'FlattenExamples' >> beam.Flatten() | 'ExtractEvaluateAndWriteResults' >> (tfma.ExtractEvaluateAndWriteResults( eval_shared_model=models[0] if len(models) == 1 else models, eval_config=eval_config, extractors=extractors, output_path=output_uri, slice_spec=slice_spec, tensor_adapter_config=tensor_adapter_config))) logging.info('Evaluation complete. Results written to %s.', output_uri) if not run_validation: # TODO(jinhuang): delete the BLESSING_KEY from output_dict when supported. logging.info('No threshold configured, will not validate model.') return # Set up blessing artifact blessing = artifact_utils.get_single_instance( output_dict[standard_component_specs.BLESSING_KEY]) blessing.set_string_custom_property( constants.ARTIFACT_PROPERTY_CURRENT_MODEL_URI_KEY, artifact_utils.get_single_uri( input_dict[standard_component_specs.MODEL_KEY])) blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_CURRENT_MODEL_ID_KEY, input_dict[standard_component_specs.MODEL_KEY][0].id) if input_dict.get(standard_component_specs.BASELINE_MODEL_KEY): baseline_model = input_dict[ standard_component_specs.BASELINE_MODEL_KEY][0] blessing.set_string_custom_property( constants.ARTIFACT_PROPERTY_BASELINE_MODEL_URI_KEY, baseline_model.uri) blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BASELINE_MODEL_ID_KEY, baseline_model.id) if 'current_component_id' in exec_properties: blessing.set_string_custom_property( 'component_id', exec_properties['current_component_id']) # Check validation result and write BLESSED file accordingly. logging.info('Checking validation results.') validation_result = tfma.load_validation_result(output_uri) if validation_result.validation_ok: io_utils.write_string_file( os.path.join(blessing.uri, constants.BLESSED_FILE_NAME), '') blessing.set_int_custom_property(constants.ARTIFACT_PROPERTY_BLESSED_KEY, constants.BLESSED_VALUE) else: io_utils.write_string_file( os.path.join(blessing.uri, constants.NOT_BLESSED_FILE_NAME), '') blessing.set_int_custom_property(constants.ARTIFACT_PROPERTY_BLESSED_KEY, constants.NOT_BLESSED_VALUE) logging.info('Blessing result %s written to %s.', validation_result.validation_ok, blessing.uri)