コード例 #1
0
    def test_average_no_noise(self):
        record1 = tf.constant([5.0, 0.0])  # Clipped to [3.0, 0.0].
        record2 = tf.constant([-1.0, 2.0])  # Not clipped.

        query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipAverageQuery(
            initial_l2_norm_clip=3.0,
            noise_multiplier=0.0,
            denominator=2.0,
            target_unclipped_quantile=1.0,
            learning_rate=0.0,
            clipped_count_stddev=0.0,
            expected_num_records=2.0)
        query_result, _ = test_utils.run_query(query, [record1, record2])
        result = query_result.numpy()
        expected_average = [1.0, 1.0]
        self.assertAllClose(result, expected_average)
コード例 #2
0
    def test_average_with_noise(self):
        record1, record2 = 2.71828, 3.14159
        sum_stddev = 1.0
        denominator = 2.0
        clip = 3.0

        query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipAverageQuery(
            initial_l2_norm_clip=clip,
            noise_multiplier=sum_stddev / clip,
            denominator=denominator,
            target_unclipped_quantile=1.0,
            learning_rate=0.0,
            clipped_count_stddev=0.0,
            expected_num_records=2.0)

        noised_averages = []
        for _ in range(1000):
            query_result, _ = test_utils.run_query(query, [record1, record2])
            noised_averages.append(query_result.numpy())

        result_stddev = np.std(noised_averages)
        avg_stddev = sum_stddev / denominator
        self.assertNear(result_stddev, avg_stddev, 0.1)