コード例 #1
0
        attack_result.roc_curve.get_attacker_advantage())

max_auc_attacker = attack_results.get_result_with_max_attacker_advantage()
print("Attack type with max AUC: %s, AUC of %.2f" %
      (max_auc_attacker.attack_type, max_auc_attacker.roc_curve.get_auc()))

max_advantage_attacker = attack_results.get_result_with_max_attacker_advantage()
print("Attack type with max advantage: %s, Attacker advantage of %.2f" %
      (max_advantage_attacker.attack_type,
       max_advantage_attacker.roc_curve.get_attacker_advantage()))

# Print summary
print("Summary without slices: \n")
print(attack_results.summary(by_slices=False))

print("Summary by slices: \n")
print(attack_results.summary(by_slices=True))

# Print pandas data frame
print("Pandas frame: \n")
pd.set_option("display.max_rows", None, "display.max_columns", None)
print(attack_results.calculate_pd_dataframe())

# Example of ROC curve plotting.
figure = plotting.plot_roc_curve(
    attack_results.single_attack_results[0].roc_curve)
plt.show()

# For saving a figure into a file:
# plotting.save_plot(figure, <file_path>)
コード例 #2
0
def main(unused_argv):
    epoch_results = AttackResultsCollection([])

    num_epochs = 2
    models = {
        "two layer model": two_layer_model,
        "three layer model": three_layer_model,
    }
    for model_name in models:
        # Incrementally train the model and store privacy metrics every num_epochs.
        for i in range(1, 6):
            models[model_name].fit(
                training_features,
                to_categorical(training_labels, num_clusters),
                validation_data=(test_features,
                                 to_categorical(test_labels, num_clusters)),
                batch_size=64,
                epochs=num_epochs,
                shuffle=True)

            training_pred = models[model_name].predict(training_features)
            test_pred = models[model_name].predict(test_features)

            # Add metadata to generate a privacy report.
            privacy_report_metadata = PrivacyReportMetadata(
                accuracy_train=metrics.accuracy_score(
                    training_labels, np.argmax(training_pred, axis=1)),
                accuracy_test=metrics.accuracy_score(
                    test_labels, np.argmax(test_pred, axis=1)),
                epoch_num=num_epochs * i,
                model_variant_label=model_name)

            attack_results = mia.run_attacks(
                AttackInputData(labels_train=training_labels,
                                labels_test=test_labels,
                                probs_train=training_pred,
                                probs_test=test_pred,
                                loss_train=crossentropy(
                                    training_labels, training_pred),
                                loss_test=crossentropy(test_labels,
                                                       test_pred)),
                SlicingSpec(entire_dataset=True, by_class=True),
                attack_types=(AttackType.THRESHOLD_ATTACK,
                              AttackType.LOGISTIC_REGRESSION),
                privacy_report_metadata=privacy_report_metadata)
            epoch_results.append(attack_results)

    # Generate privacy reports
    epoch_figure = privacy_report.plot_by_epochs(
        epoch_results, [PrivacyMetric.ATTACKER_ADVANTAGE, PrivacyMetric.AUC])
    epoch_figure.show()
    privacy_utility_figure = privacy_report.plot_privacy_vs_accuracy_single_model(
        epoch_results, [PrivacyMetric.ATTACKER_ADVANTAGE, PrivacyMetric.AUC])
    privacy_utility_figure.show()

    # Example of saving the results to the file and loading them back.
    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "results.pickle")
        attack_results.save(filepath)
        loaded_results = AttackResults.load(filepath)
        print(loaded_results.summary(by_slices=False))

    # Print attack metrics
    for attack_result in attack_results.single_attack_results:
        print("Slice: %s" % attack_result.slice_spec)
        print("Attack type: %s" % attack_result.attack_type)
        print("AUC: %.2f" % attack_result.roc_curve.get_auc())

        print("Attacker advantage: %.2f\n" %
              attack_result.roc_curve.get_attacker_advantage())

    max_auc_attacker = attack_results.get_result_with_max_auc()
    print("Attack type with max AUC: %s, AUC of %.2f" %
          (max_auc_attacker.attack_type, max_auc_attacker.roc_curve.get_auc()))

    max_advantage_attacker = attack_results.get_result_with_max_attacker_advantage(
    )
    print("Attack type with max advantage: %s, Attacker advantage of %.2f" %
          (max_advantage_attacker.attack_type,
           max_advantage_attacker.roc_curve.get_attacker_advantage()))

    # Print summary
    print("Summary without slices: \n")
    print(attack_results.summary(by_slices=False))

    print("Summary by slices: \n")
    print(attack_results.summary(by_slices=True))

    # Print pandas data frame
    print("Pandas frame: \n")
    pd.set_option("display.max_rows", None, "display.max_columns", None)
    print(attack_results.calculate_pd_dataframe())

    # Example of ROC curve plotting.
    figure = plotting.plot_roc_curve(
        attack_results.single_attack_results[0].roc_curve)
    figure.show()
    plt.show()