コード例 #1
0
 def testBijector(self):
     with self.cached_session():
         for fwd in [
                 tfb.Identity(),
                 tfb.Exp(),
                 tfb.Affine(shift=[0., 1.], scale_diag=[2., 3.]),
                 tfb.Softplus(),
                 tfb.SoftmaxCentered(),
         ]:
             rev = tfb.Invert(fwd)
             self.assertEqual("_".join(["invert", fwd.name]), rev.name)
             x = [[[1., 2.], [2., 3.]]]
             self.assertAllClose(self.evaluate(fwd.inverse(x)),
                                 self.evaluate(rev.forward(x)))
             self.assertAllClose(self.evaluate(fwd.forward(x)),
                                 self.evaluate(rev.inverse(x)))
             self.assertAllClose(
                 self.evaluate(
                     fwd.forward_log_det_jacobian(x, event_ndims=1)),
                 self.evaluate(
                     rev.inverse_log_det_jacobian(x, event_ndims=1)))
             self.assertAllClose(
                 self.evaluate(
                     fwd.inverse_log_det_jacobian(x, event_ndims=1)),
                 self.evaluate(
                     rev.forward_log_det_jacobian(x, event_ndims=1)))
コード例 #2
0
  def testTransformedDistribution(self):
    mu = 3.0
    sigma = 2.0
    # Note: the Jacobian callable only works for this example; more generally
    # you may or may not need a reduce_sum.
    log_normal = tfd.TransformedDistribution(
        distribution=tfd.Normal(loc=mu, scale=sigma),
        bijector=tfb.Exp(),
        validate_args=True)
    sp_dist = stats.lognorm(s=sigma, scale=np.exp(mu))

    # sample
    sample = log_normal.sample(100000, seed=test_util.test_seed())
    self.assertAllEqual([], log_normal.event_shape)
    self.assertAllEqual([], self.evaluate(log_normal.event_shape_tensor()))
    self.assertAllClose(
        sp_dist.mean(), np.mean(self.evaluate(sample)), atol=0.0, rtol=0.05)

    # pdf, log_pdf, cdf, etc...
    # The mean of the lognormal is around 148.
    test_vals = np.linspace(0.1, 1000., num=20).astype(np.float32)
    for func in [[log_normal.log_prob, sp_dist.logpdf],
                 [log_normal.prob, sp_dist.pdf],
                 [log_normal.log_cdf, sp_dist.logcdf],
                 [log_normal.cdf, sp_dist.cdf],
                 [log_normal.survival_function, sp_dist.sf],
                 [log_normal.log_survival_function, sp_dist.logsf]]:
      actual = func[0](test_vals)
      expected = func[1](test_vals)
      self.assertAllClose(
          expected, self.evaluate(actual), atol=0, rtol=0.01)
コード例 #3
0
 def testScalarCongruency(self):
     with self.test_session():
         bijector = tfb.Exp()
         assert_scalar_congruency(bijector,
                                  lower_x=-2.,
                                  upper_x=1.5,
                                  rtol=0.05)
コード例 #4
0
  def testCovarianceNotImplemented(self):
    mvn = tfd.MultivariateNormalDiag(loc=[0., 0.], scale_diag=[1., 2.])

    # Non-affine bijector.
    with self.assertRaisesRegex(
        NotImplementedError, '`covariance` is not implemented'):
      tfd.TransformedDistribution(
          distribution=mvn, bijector=tfb.Exp()).covariance()

    # Non-injective bijector.
    with self.assertRaisesRegex(
        NotImplementedError, '`covariance` is not implemented'):
      tfd.TransformedDistribution(
          distribution=mvn, bijector=tfb.AbsoluteValue()).covariance()

    # Non-vector event shape.
    with self.assertRaisesRegex(
        NotImplementedError, '`covariance` is only implemented'):
      tfd.TransformedDistribution(
          distribution=mvn,
          bijector=tfb.Reshape(event_shape_out=[2, 1],
                               event_shape_in=[2])).covariance()

    # Multipart bijector.
    with self.assertRaisesRegex(
        NotImplementedError, '`covariance` is only implemented'):
      tfd.TransformedDistribution(
          distribution=mvn, bijector=tfb.Split(2)).covariance()
コード例 #5
0
    def testBijector(self):
        x = np.float32(np.random.randn(3, 4, 4))

        y = x.copy()
        for i in range(x.shape[0]):
            np.fill_diagonal(y[i, :, :], np.exp(np.diag(x[i, :, :])))

        exp = tfb.Exp()
        b = tfb.TransformDiagonal(diag_bijector=exp)

        y_ = self.evaluate(b.forward(x))
        self.assertAllClose(y, y_)

        x_ = self.evaluate(b.inverse(y))
        self.assertAllClose(x, x_)

        fldj = self.evaluate(b.forward_log_det_jacobian(x, event_ndims=2))
        ildj = self.evaluate(b.inverse_log_det_jacobian(y, event_ndims=2))
        self.assertAllEqual(
            fldj,
            self.evaluate(
                exp.forward_log_det_jacobian(np.array(
                    [np.diag(x_mat) for x_mat in x]),
                                             event_ndims=1)))
        self.assertAllEqual(
            ildj,
            self.evaluate(
                exp.inverse_log_det_jacobian(np.array(
                    [np.diag(y_mat) for y_mat in y]),
                                             event_ndims=1)))
コード例 #6
0
 def testDocstringExample(self):
   exp_gamma_distribution = (
       tfd.TransformedDistribution(
           distribution=tfd.Gamma(concentration=1., rate=2.),
           bijector=tfb.Invert(tfb.Exp())))
   self.assertAllEqual(
       [], self.evaluate(tf.shape(exp_gamma_distribution.sample())))
コード例 #7
0
 def testScalarCongruency(self):
     chain = tfb.Chain((tfb.Exp(), tfb.Softplus()))
     bijector_test_util.assert_scalar_congruency(chain,
                                                 lower_x=1e-3,
                                                 upper_x=1.5,
                                                 rtol=0.05,
                                                 eval_func=self.evaluate)
コード例 #8
0
    def testCompositeTensor(self):
        exp = tfb.Exp()
        sp = tfb.Softplus()
        aff = tfb.Scale(scale=2.)
        chain = tfb.Chain(bijectors=[exp, sp, aff])
        self.assertIsInstance(chain, tf.__internal__.CompositeTensor)

        # Bijector may be flattened into `Tensor` components and rebuilt.
        flat = tf.nest.flatten(chain, expand_composites=True)
        unflat = tf.nest.pack_sequence_as(chain, flat, expand_composites=True)
        self.assertIsInstance(unflat, tfb.Chain)

        # Bijector may be input to a `tf.function`-decorated callable.
        @tf.function
        def call_forward(bij, x):
            return bij.forward(x)

        x = tf.ones([2, 3], dtype=tf.float32)
        self.assertAllClose(call_forward(unflat, x), chain.forward(x))

        # TypeSpec can be encoded/decoded.
        struct_coder = tf.__internal__.saved_model.StructureCoder()
        enc = struct_coder.encode_structure(chain._type_spec)
        dec = struct_coder.decode_proto(enc)
        self.assertEqual(chain._type_spec, dec)
コード例 #9
0
    def test_single_part_str_repr_match_expected(self):
        bij = tfb.Exp()
        self.assertContainsInOrder(
            ['tfp.bijectors.Exp("exp", batch_shape=[], min_event_ndims=0)'],
            str(bij))
        self.assertContainsInOrder([
            "<tfp.bijectors.Exp 'exp' batch_shape=[] forward_min_event_ndims=0 "
            "inverse_min_event_ndims=0 dtype_x=? dtype_y=?>"
        ], repr(bij))

        bij = tfb.Scale([1., 1.], name='myscale')
        self.assertContainsInOrder([
            'tfp.bijectors.Scale("myscale", batch_shape=[2], min_event_ndims=0, '
            'dtype=float32)'
        ], str(bij))
        self.assertContainsInOrder([
            "<tfp.bijectors.Scale 'myscale' batch_shape=[2] "
            "forward_min_event_ndims=0 inverse_min_event_ndims=0 dtype_x=float32 "
            "dtype_y=float32>"
        ], repr(bij))

        bij = tfb.Split([3, 4, 2], name='s_p_l_i_t')
        self.assertContainsInOrder([
            'tfp.bijectors.Split("s_p_l_i_t", batch_shape=[], '
            'forward_min_event_ndims=1, inverse_min_event_ndims=[1, 1, 1])'
        ], str(bij))
        self.assertContainsInOrder([
            "<tfp.bijectors.Split 's_p_l_i_t' batch_shape=[] "
            "forward_min_event_ndims=1 inverse_min_event_ndims=[1, 1, 1] "
            "dtype_x=? dtype_y=[?, ?, ?]>"
        ], repr(bij))
コード例 #10
0
 def testScalarCongruency(self):
     bijector = tfb.Exp()
     bijector_test_util.assert_scalar_congruency(bijector,
                                                 lower_x=-2.,
                                                 upper_x=1.5,
                                                 eval_func=self.evaluate,
                                                 rtol=0.05)
コード例 #11
0
 def testRaisesBadBlocks(self):
     with self.assertRaisesRegexp(
             ValueError,
             r'`block_sizes` must be `None`, or a vector of the same length as '
             r'`bijectors`. Got a `Tensor` with shape \(2L?,\) and `bijectors` of '
             r'length 1'):
         tfb.Blockwise(bijectors=[tfb.Exp()], block_sizes=[1, 2])
コード例 #12
0
    def testRaisesBadBlocksDynamic(self):
        if tfe.executing_eagerly():
            return
        with self.assertRaises(tf.errors.InvalidArgumentError):
            block_sizes = tf.placeholder_with_default([1, 2], shape=None)
            blockwise = tfb.Blockwise(bijectors=[tfb.Exp()],
                                      block_sizes=block_sizes,
                                      validate_args=True)
            self.evaluate(blockwise.block_sizes)

        with self.assertRaises(tf.errors.InvalidArgumentError):
            block_sizes = tf.placeholder_with_default([[1]], shape=None)
            blockwise = tfb.Blockwise(bijectors=[tfb.Exp()],
                                      block_sizes=block_sizes,
                                      validate_args=True)
            self.evaluate(blockwise.block_sizes)
コード例 #13
0
    def testDofChangeError(self):
        exp = tfb.Exp()
        smc = tfb.SoftmaxCentered()

        # Increase in event-size is the last step. No problems here.
        safe_bij = tfb.Chain([smc, exp],
                             validate_args=True,
                             validate_event_size=True)
        self.evaluate(safe_bij.forward_log_det_jacobian([1., 2., 3.], 1))

        # Increase in event-size before Exp.
        raise_bij = tfb.Chain([exp, smc],
                              validate_args=True,
                              validate_event_size=True)
        with self.assertRaisesRegex(
            (ValueError, tf.errors.InvalidArgumentError),
                r".+degrees of freedom.+"):
            self.evaluate(raise_bij.forward_log_det_jacobian([1., 2., 3.], 1))

        # When validate_args is False, warns instead of raising.
        warn_bij = tfb.Chain([exp, smc],
                             validate_args=False,
                             validate_event_size=True)
        with mock.patch.object(tf, "print",
                               return_value=tf.no_op()) as mock_print:
            self.evaluate(warn_bij.forward_log_det_jacobian([1., 2., 3.], 1))
            print_args, _ = mock_print.call_args
            self.assertRegex(print_args[0], r"WARNING:.+degrees of freedom")

        # When validate_event_shape is False, neither warns nor raises.
        ignore_bij = tfb.Chain([exp, smc], validate_event_size=False)
        self.evaluate(ignore_bij.forward_log_det_jacobian([1., 2., 3.], 1))
コード例 #14
0
    def test_caches(self):
        if mock is None:
            return

        x_ = np.array([[-0.1, 0.2], [0.3, -0.4]], np.float32)
        y_ = np.exp(x_)
        b = tfb.Exp()

        # We will intercept calls to TF to ensure np.array objects don't get
        # converted to tf.Tensor objects.

        with mock.patch.object(tf, 'convert_to_tensor', return_value=x_):
            with mock.patch.object(tf, 'exp', return_value=y_):
                y = b.forward(x_)
                self.assertIsInstance(y, np.ndarray)
                self.assertAllEqual([x_], [k() for k in b._from_x.keys()])

        with mock.patch.object(tf, 'convert_to_tensor', return_value=y_):
            with mock.patch.object(tf.math, 'log', return_value=x_):
                x = b.inverse(y_)
                self.assertIsInstance(x, np.ndarray)
                self.assertIs(x, b.inverse(y))
                self.assertAllEqual([y_], [k() for k in b._from_y.keys()])

        yt_ = y_.T
        xt_ = x_.T
        with mock.patch.object(tf, 'convert_to_tensor', return_value=yt_):
            with mock.patch.object(tf.math, 'log', return_value=xt_):
                xt = b.inverse(yt_)
                self.assertIsNot(x, xt)
                self.assertIs(xt_, xt)
コード例 #15
0
ファイル: lognormal.py プロジェクト: zaman11/probability
    def __init__(self,
                 loc=None,
                 scale=None,
                 validate_args=False,
                 allow_nan_stats=True,
                 name="LogNormal"):
        """Construct a log-normal distribution.

    The LogNormal distribution models positive-valued random variables
    whose logarithm is normally distributed with mean `loc` and
    standard deviation `scale`. It is constructed as the exponential
    transformation of a Normal distribution.

    Args:
      loc: Floating-point `Tensor`; the means of the underlying
        Normal distribution(s).
      scale: Floating-point `Tensor`; the stddevs of the underlying
        Normal distribution(s).
      validate_args: Python `bool`, default `False`. Whether to validate input
        with asserts. If `validate_args` is `False`, and the inputs are
        invalid, correct behavior is not guaranteed.
      allow_nan_stats: Python `bool`, default `True`. If `False`, raise an
        exception if a statistic (e.g. mean/mode/etc...) is undefined for any
        batch member If `True`, batch members with valid parameters leading to
        undefined statistics will return NaN for this statistic.
      name: The name to give Ops created by the initializer.
    """
        with tf.name_scope(name, values=[loc, scale]) as name:
            dtype = dtype_util.common_dtype([loc, scale], tf.float32)
            super(LogNormal, self).__init__(distribution=normal.Normal(
                loc=tf.convert_to_tensor(loc, name="loc", dtype=dtype),
                scale=tf.convert_to_tensor(scale, name="scale", dtype=dtype)),
                                            bijector=bijectors.Exp(),
                                            validate_args=validate_args,
                                            name=name)
コード例 #16
0
    def test_nested_transform(self):
        target_dist = tfd.Normal(loc=0., scale=1.)
        b1 = tfb.Scale(0.5)
        b2 = tfb.Exp()
        chain = tfb.Chain([b2, b1
                           ])  # applies bijectors right to left (b1 then b2).
        inner_kernel = tfp.mcmc.TransformedTransitionKernel(
            inner_kernel=tfp.mcmc.HamiltonianMonteCarlo(
                target_log_prob_fn=target_dist.log_prob,
                num_leapfrog_steps=27,
                step_size=10),
            bijector=b1)
        outer_kernel = tfp.mcmc.TransformedTransitionKernel(
            inner_kernel=inner_kernel, bijector=b2)
        chain_kernel = tfp.mcmc.TransformedTransitionKernel(
            inner_kernel=tfp.mcmc.HamiltonianMonteCarlo(
                target_log_prob_fn=target_dist.log_prob,
                num_leapfrog_steps=27,
                step_size=10),
            bijector=chain)
        outer_pkr_one, outer_pkr_two = self.evaluate([
            outer_kernel.bootstrap_results(2.),
            outer_kernel.bootstrap_results(9.),
        ])

        # the outermost kernel only applies the outermost bijector
        self.assertNear(np.log(2.), outer_pkr_one.transformed_state, err=1e-6)
        self.assertNear(np.log(9.), outer_pkr_two.transformed_state, err=1e-6)

        chain_pkr_one, chain_pkr_two = self.evaluate([
            chain_kernel.bootstrap_results(2.),
            chain_kernel.bootstrap_results(9.),
        ])

        # all bijectors are applied to the inner kernel, from innermost to outermost
        # this behavior is completely analogous to a bijector Chain
        self.assertNear(chain_pkr_one.transformed_state,
                        outer_pkr_one.inner_results.transformed_state,
                        err=1e-6)
        self.assertEqual(
            chain_pkr_one.inner_results.accepted_results,
            outer_pkr_one.inner_results.inner_results.accepted_results)
        self.assertNear(chain_pkr_two.transformed_state,
                        outer_pkr_two.inner_results.transformed_state,
                        err=1e-6)
        self.assertEqual(
            chain_pkr_two.inner_results.accepted_results,
            outer_pkr_two.inner_results.inner_results.accepted_results)

        seed = test_util.test_seed(sampler_type='stateless')
        outer_results_one, outer_results_two = self.evaluate([
            outer_kernel.one_step(2., outer_pkr_one, seed=seed),
            outer_kernel.one_step(9., outer_pkr_two, seed=seed)
        ])
        chain_results_one, chain_results_two = self.evaluate([
            chain_kernel.one_step(2., chain_pkr_one, seed=seed),
            chain_kernel.one_step(9., chain_pkr_two, seed=seed)
        ])
        self.assertNear(chain_results_one[0], outer_results_one[0], err=1e-6)
        self.assertNear(chain_results_two[0], outer_results_two[0], err=1e-6)
コード例 #17
0
    def testBijectorWithDeepStructure(self):
        bij = tfb.JointMap({
            'a': tfb.Exp(),
            'bc': tfb.JointMap([tfb.Scale(2.), tfb.Shift(3.)])
        })

        a = np.asarray([[[1, 2], [2, 3]]], dtype=np.float32)  # shape=[1, 2, 2]
        b = np.asarray([[0, 4]], dtype=np.float32)  # shape=[1, 2]
        c = np.asarray([[5, 6]], dtype=np.float32)  # shape=[1, 2]

        inputs = {
            'a': a,
            'bc': [b, c]
        }  # Could be inputs to forward or inverse.
        event_ndims = {'a': 1, 'bc': [0, 0]}

        self.assertStartsWith(bij.name, 'jointmap_of_exp_and_jointmap_of_')
        self.assertAllCloseNested({
            'a': np.exp(a),
            'bc': [b * 2., c + 3]
        }, self.evaluate(bij.forward(inputs)))
        self.assertAllCloseNested({
            'a': np.log(a),
            'bc': [b / 2., c - 3]
        }, self.evaluate(bij.inverse(inputs)))

        fldj = self.evaluate(bij.forward_log_det_jacobian(inputs, event_ndims))
        self.assertEqual((1, 2), fldj.shape)
        self.assertAllClose(np.sum(a, axis=-1) + np.log(2), fldj)

        ildj = self.evaluate(bij.inverse_log_det_jacobian(inputs, event_ndims))
        self.assertEqual((1, 2), ildj.shape)
        self.assertAllClose(-np.log(a).sum(axis=-1) - np.log(2), ildj)
コード例 #18
0
    def testBatchShapeBroadcasts(self):
        bij = tfb.JointMap({
            'a': tfb.Exp(),
            'b': tfb.Scale(10.)
        },
                           validate_args=True)
        self.assertStartsWith(bij.name, 'jointmap_of_exp_and_scale')

        a = np.asarray([[[1, 2]], [[2, 3]]],
                       dtype=np.float32)  # shape=[2, 1, 2]
        b = np.asarray([[0, 1, 2]], dtype=np.float32)  # shape=[1, 3]

        inputs = {'a': a, 'b': b}  # Could be inputs to forward or inverse.

        self.assertAllClose(
            a.sum(axis=-1) + np.log(10.),
            self.evaluate(
                bij.forward_log_det_jacobian(inputs, {
                    'a': 1,
                    'b': 0
                })))

        self.assertAllClose(
            a.sum(axis=-1) + 3 * np.log(10.),
            self.evaluate(
                bij.forward_log_det_jacobian(inputs, {
                    'a': 1,
                    'b': 1
                })))
コード例 #19
0
ファイル: joint_map_test.py プロジェクト: axch/probability
  def testNonCompositeTensor(self):

    # TODO(b/182603117): Move NonComposite* into test_util.
    class NonCompositeScale(tfb.Bijector):
      """Bijector that is not a `CompositeTensor`."""

      def __init__(self, scale):
        parameters = dict(locals())
        self.scale = scale
        super(NonCompositeScale, self).__init__(
            validate_args=True,
            forward_min_event_ndims=0.,
            parameters=parameters,
            name='non_composite_scale')

      def _forward(self, x):
        return x * self.scale

    exp = tfb.Exp()
    scale = NonCompositeScale(scale=tf.constant(3.))
    bij = tfb.JointMap(bijectors=[exp, scale])
    self.assertNotIsInstance(bij, tf.__internal__.CompositeTensor)
    self.assertAllCloseNested(
        bij.forward([1., 1.]),
        [exp.forward(1.), scale.forward(1.)])
コード例 #20
0
ファイル: chain_test.py プロジェクト: zhuobumeng/probability
 def testScalarCongruency(self):
     with self.test_session():
         chain = tfb.Chain((tfb.Exp(), tfb.Softplus()))
         assert_scalar_congruency(chain,
                                  lower_x=1e-3,
                                  upper_x=1.5,
                                  rtol=0.05)
コード例 #21
0
    def test_composition_str_and_repr_match_expected_dynamic_shape(self):
        bij = tfb.Chain([
            tfb.Exp(),
            tfb.Shift(self._tensor([1., 2.])),
            tfb.SoftmaxCentered()
        ])
        self.assertContainsInOrder([
            'tfp.bijectors.Chain(',
            ('min_event_ndims=1, bijectors=[Exp, Shift, SoftmaxCentered])')
        ], str(bij))
        self.assertContainsInOrder([
            '<tfp.bijectors.Chain ',
            ('batch_shape=? forward_min_event_ndims=1 inverse_min_event_ndims=1 '
             'dtype_x=float32 dtype_y=float32 bijectors=[<tfp.bijectors.Exp'),
            '>, <tfp.bijectors.Shift', '>, <tfp.bijectors.SoftmaxCentered',
            '>]>'
        ], repr(bij))

        bij = tfb.Chain([
            tfb.JointMap({
                'a': tfb.Exp(),
                'b': tfb.ScaleMatvecDiag(self._tensor([2., 2.]))
            }),
            tfb.Restructure({
                'a': 0,
                'b': 1
            }, [0, 1]),
            tfb.Split(2),
            tfb.Invert(tfb.SoftmaxCentered()),
        ])
        self.assertContainsInOrder([
            'tfp.bijectors.Chain(',
            ('forward_min_event_ndims=1, '
             'inverse_min_event_ndims={a: 1, b: 1}, '
             'bijectors=[JointMap({a: Exp, b: ScaleMatvecDiag}), '
             'Restructure, Split, Invert(SoftmaxCentered)])')
        ], str(bij))
        self.assertContainsInOrder([
            '<tfp.bijectors.Chain ',
            ('batch_shape=? forward_min_event_ndims=1 '
             "inverse_min_event_ndims={'a': 1, 'b': 1} dtype_x=float32 "
             "dtype_y={'a': ?, 'b': float32} "
             "bijectors=[<tfp.bijectors.JointMap "),
            '>, <tfp.bijectors.Restructure', '>, <tfp.bijectors.Split',
            '>, <tfp.bijectors.Invert', '>]>'
        ], repr(bij))
コード例 #22
0
ファイル: exp_test.py プロジェクト: yarenty/probability
 def testJacobian(self):
     bijector = tfb.Exp()
     x = np.expand_dims(np.linspace(-1, 1, num=10), -1)
     fldj = bijector.forward_log_det_jacobian(x, event_ndims=1)
     fldj_theoretical = bijector_test_util.get_fldj_theoretical(
         bijector, x, event_ndims=1)
     fldj_, fldj_theoretical_ = self.evaluate([fldj, fldj_theoretical])
     self.assertAllClose(fldj_, fldj_theoretical_)
コード例 #23
0
 def test_bijector_valid_adapt_then_transform(self):
   new_kernel = make_adapt_then_transform_kernel(tfb.Exp())
   pkr_one, pkr_two = self.evaluate([
       new_kernel.bootstrap_results(2.),
       new_kernel.bootstrap_results(9.),
   ])
   self.assertNear(np.log(2.), pkr_one.transformed_state, err=1e-6)
   self.assertNear(np.log(9.), pkr_two.transformed_state, err=1e-6)
コード例 #24
0
 def testName(self):
     exp = tfb.Exp()
     sp = tfb.Softplus()
     aff = tfb.Affine(scale_diag=[2., 3., 4.])
     blockwise = tfb.Blockwise(bijectors=[exp, sp, aff],
                               block_sizes=[2, 1, 3])
     self.assertStartsWith(blockwise.name,
                           'blockwise_of_exp_and_softplus_and_affine')
コード例 #25
0
 def testHandlesKwargs(self):
   x = tfb.Exp()(tfd.Normal(0, 1), event_shape=[4])
   y = tfd.Independent(tfd.LogNormal(tf.zeros(4), 1), 1)
   z = tf.constant([[1., 2, 3, 4],
                    [0.5, 1.5, 2., 2.5]])
   self.assertAllClose(
       *self.evaluate([y.log_prob(z), x.log_prob(z)]),
       atol=0, rtol=1e-3)
コード例 #26
0
 def testComposeFromNonTransformedDistribution(self):
   actual_log_normal = tfb.Exp()(tfd.Normal(0.5, 2.))
   expected_log_normal = tfd.LogNormal(0.5, 2.)
   x = tf.constant([0.1, 1., 5.])
   self.assertAllClose(
       *self.evaluate([actual_log_normal.log_prob(x),
                       expected_log_normal.log_prob(x)]),
       atol=0, rtol=1e-3)
コード例 #27
0
    def testLDJRatio(self):
        q = tfb.JointMap({
            'a': tfb.Exp(),
            'b': tfb.Scale(2.),
            'c': tfb.Shift(3.)
        })
        p = tfb.JointMap({
            'a': tfb.Exp(),
            'b': tfb.Scale(3.),
            'c': tfb.Shift(4.)
        })

        a = np.asarray([[[1, 2], [2, 3]]], dtype=np.float32)  # shape=[1, 2, 2]
        b = np.asarray([[0, 4]], dtype=np.float32)  # shape=[1, 2]
        c = np.asarray([[5, 6]], dtype=np.float32)  # shape=[1, 2]

        x = {'a': a, 'b': b, 'c': c}
        y = {'a': a + 1, 'b': b + 1, 'c': c + 1}
        event_ndims = {'a': 1, 'b': 0, 'c': 0}

        fldj_ratio_true = p.forward_log_det_jacobian(
            x, event_ndims) - q.forward_log_det_jacobian(y, event_ndims)
        fldj_ratio = ldj_ratio.forward_log_det_jacobian_ratio(
            p, x, q, y, event_ndims)
        self.assertAllClose(fldj_ratio_true, fldj_ratio)

        ildj_ratio_true = p.inverse_log_det_jacobian(
            x, event_ndims) - q.inverse_log_det_jacobian(y, event_ndims)
        ildj_ratio = ldj_ratio.inverse_log_det_jacobian_ratio(
            p, x, q, y, event_ndims)
        self.assertAllClose(ildj_ratio_true, ildj_ratio)

        event_ndims = {'a': 1, 'b': 2, 'c': 0}

        fldj_ratio_true = p.forward_log_det_jacobian(
            x, event_ndims) - q.forward_log_det_jacobian(y, event_ndims)
        fldj_ratio = ldj_ratio.forward_log_det_jacobian_ratio(
            p, x, q, y, event_ndims)
        self.assertAllClose(fldj_ratio_true, fldj_ratio)

        ildj_ratio_true = p.inverse_log_det_jacobian(
            x, event_ndims) - q.inverse_log_det_jacobian(y, event_ndims)
        ildj_ratio = ldj_ratio.inverse_log_det_jacobian_ratio(
            p, x, q, y, event_ndims)
        self.assertAllClose(ildj_ratio_true, ildj_ratio)
コード例 #28
0
 def testBijectiveAndFinite(self):
     bijector = tfb.Exp()
     x = np.linspace(-10, 10, num=10).astype(np.float32)
     y = np.logspace(-10, 10, num=10).astype(np.float32)
     bijector_test_util.assert_bijective_and_finite(bijector,
                                                    x,
                                                    y,
                                                    eval_func=self.evaluate,
                                                    event_ndims=0)
コード例 #29
0
 def testSupportBijectorOutsideRange(self):
   log_normal = tfd.TransformedDistribution(
       distribution=tfd.Normal(loc=1., scale=2.),
       bijector=tfb.Exp(),
       validate_args=True)
   x = np.array([-4.2, -1e-6, -1.3])
   bijector_inverse_x = (
       log_normal._experimental_default_event_space_bijector().inverse(x))
   self.assertAllNan(self.evaluate(bijector_inverse_x))
コード例 #30
0
 def testNonCompositeTensor(self):
     exp = tfb.Exp()
     scale = test_util.NonCompositeTensorScale(scale=tf.constant(3.))
     blockwise = tfb.Blockwise(bijectors=[exp, scale])
     self.assertNotIsInstance(blockwise, tf.__internal__.CompositeTensor)
     self.assertAllClose(
         blockwise.forward([1., 1.]),
         tf.convert_to_tensor([exp.forward(1.),
                               scale.forward(1.)]))