コード例 #1
0
 def testBijectiveAndFinite(self):
     bijector = tfb.NormalCDF(validate_args=True)
     x = np.linspace(-10., 10., num=10).astype(np.float32)
     y = np.linspace(0.1, 0.9, num=10).astype(np.float32)
     bijector_test_util.assert_bijective_and_finite(bijector,
                                                    x,
                                                    y,
                                                    eval_func=self.evaluate,
                                                    event_ndims=0,
                                                    rtol=1e-4)
コード例 #2
0
 def disabled_testFailureCase(self):
     # TODO(b/140229057): This test should pass.
     dist = tfd.Chi(df=np.float32(27.744131))
     dist = tfd.TransformedDistribution(bijector=tfb.NormalCDF(),
                                        distribution=dist,
                                        batch_shape=[4])
     dist = tfb.Expm1()(dist)
     samps = 1.7182817 + tf.zeros_like(dist.sample())
     self.assertAllClose(
         dist.log_prob(samps)[0], dist[0].log_prob(samps[0]))
コード例 #3
0
 def disabled_testFailureCase(self):  # pylint: disable=invalid-name
     # TODO(b/140229057): This test should pass.
     dist = tfd.Chi(df=np.float32(27.744131) *
                    np.ones((4, )).astype(np.float32))
     dist = tfd.TransformedDistribution(bijector=tfb.NormalCDF(),
                                        distribution=dist)
     dist = tfb.Expm1()(dist)
     samps = 1.7182817 + tf.zeros_like(
         dist.sample(seed=test_util.test_seed()))
     self.assertAllClose(
         dist.log_prob(samps)[0], dist[0].log_prob(samps[0]))
コード例 #4
0
ファイル: normal_cdf_test.py プロジェクト: suryansh2020/mynlp
  def testValidateArgs(self):
    bijector = tfb.NormalCDF(validate_args=True)
    with self.assertRaisesOpError("must be greater than 0"):
      self.evaluate(bijector.inverse(-1.))

    with self.assertRaisesOpError("must be greater than 0"):
      self.evaluate(bijector.inverse_log_det_jacobian(-1., event_ndims=0))

    with self.assertRaisesOpError("must be less than or equal to 1"):
      self.evaluate(bijector.inverse(2.))

    with self.assertRaisesOpError("must be less than or equal to 1"):
      self.evaluate(bijector.inverse_log_det_jacobian(2., event_ndims=0))
コード例 #5
0
 def testTheoreticalFldjNormalCDF(self):
     # b/137367959 test failure trigger case (resolved by using
     # experimental_use_pfor=False as fallback instead of primary in
     # bijector_test_util.get_fldj_theoretical)
     bijector = tfb.TransformDiagonal(diag_bijector=tfb.NormalCDF())
     x = np.zeros([0, 0])
     fldj = bijector.forward_log_det_jacobian(x, event_ndims=2)
     fldj_theoretical = bijector_test_util.get_fldj_theoretical(
         bijector, x, event_ndims=2, inverse_event_ndims=2)
     self.assertAllClose(self.evaluate(fldj_theoretical),
                         self.evaluate(fldj),
                         atol=1e-5,
                         rtol=1e-5)
コード例 #6
0
ファイル: normal_cdf_test.py プロジェクト: suryansh2020/mynlp
 def testBijector(self):
   bijector = tfb.NormalCDF(validate_args=True)
   self.assertEqual("normal", bijector.name)
   x = np.array([[[-3.], [0.], [0.5], [4.2], [5.]]], dtype=np.float64)
   # Normal distribution
   normal_dist = stats.norm(loc=0., scale=1.)
   y = normal_dist.cdf(x).astype(np.float64)
   self.assertAllClose(y, self.evaluate(bijector.forward(x)))
   self.assertAllClose(x, self.evaluate(bijector.inverse(y)), rtol=1e-4)
   self.assertAllClose(
       np.squeeze(normal_dist.logpdf(x), axis=-1),
       self.evaluate(bijector.forward_log_det_jacobian(x, event_ndims=1)))
   self.assertAllClose(
       self.evaluate(-bijector.inverse_log_det_jacobian(y, event_ndims=1)),
       self.evaluate(bijector.forward_log_det_jacobian(x, event_ndims=1)),
       rtol=1e-4)
コード例 #7
0
 def testScalarCongruency(self):
     bijector_test_util.assert_scalar_congruency(tfb.NormalCDF(),
                                                 lower_x=0.,
                                                 upper_x=1.,
                                                 eval_func=self.evaluate,
                                                 rtol=0.02)
コード例 #8
0
def make_distribution_bijector(distribution,
                               name='make_distribution_bijector'):
    """Builds a bijector to approximately transform `N(0, 1)` into `distribution`.

  This represents a distribution as a bijector that
  transforms a (multivariate) standard normal distribution into the distribution
  of interest.

  Args:
    distribution: A `tfd.Distribution` instance; this may be a joint
      distribution.
    name: Python `str` name for ops created by this method.
  Returns:
    distribution_bijector: a `tfb.Bijector` instance such that
      `distribution_bijector(tfd.Normal(0., 1.))` is approximately equivalent
      to `distribution`.

  #### Examples

  This method may be used to convert structured variational distributions into
  MCMC preconditioners. Consider a model containing
  [funnel geometry](https://crackedbassoon.com/writing/funneling), which may
  be difficult for an MCMC algorithm to sample directly.

  ```python
  model_with_funnel = tfd.JointDistributionSequentialAutoBatched([
      tfd.Normal(loc=-1., scale=2., name='z'),
      lambda z: tfd.Normal(loc=[0., 0., 0.], scale=tf.exp(z), name='x'),
      lambda x: tfd.Poisson(log_rate=x, name='y')])
  pinned_model = tfp.experimental.distributions.JointDistributionPinned(
      model_with_funnel, y=[1, 3, 0])
  ```

  We can approximate the posterior in this model using a structured variational
  surrogate distribution, which will capture the funnel geometry, but cannot
  exactly represent the (non-Gaussian) posterior.

  ```python
  # Build and fit a structured surrogate posterior distribution.
  surrogate_posterior = tfp.experimental.vi.build_asvi_surrogate_posterior(
    pinned_model)
  _ = tfp.vi.fit_surrogate_posterior(pinned_model.unnormalized_log_prob,
                                     surrogate_posterior=surrogate_posterior,
                                     optimizer=tf.optimizers.Adam(0.01),
                                     num_steps=200)
  ```

  Creating a preconditioning bijector allows us to obtain higher-quality
  posterior samples, without any Gaussianity assumption, by using the surrogate
  to guide an MCMC sampler.

  ```python
  surrogate_posterior_bijector = (
    tfp.experimental.bijectors.make_distribution_bijector(surrogate_posterior))
  samples, _ = tfp.mcmc.sample_chain(
    kernel=tfp.mcmc.DualAveragingStepSizeAdaptation(
      tfp.mcmc.TransformedTransitionKernel(
        tfp.mcmc.NoUTurnSampler(pinned_model.unnormalized_log_prob,
                                step_size=0.1),
        bijector=surrogate_posterior_bijector),
      num_adaptation_steps=80),
    current_state=surrogate_posterior.sample(),
    num_burnin_steps=100,
    trace_fn=lambda _0, _1: [],
    num_results=500)
  ```

  #### Mathematical details

  The bijectors returned by this method generally follow the following
  principles, although the specific bijectors returned may vary without notice.

  Normal distributions are reparameterized by a location-scale transform.

  ```python
  b = tfp.experimental.bijectors.make_distribution_bijector(
    tfd.Normal(loc=10., scale=5.))
  # ==> tfb.Shift(10.)(tfb.Scale(5.)))

  b = tfp.experimental.bijectors.make_distribution_bijector(
    tfd.MultivariateNormalTriL(loc=loc, scale_tril=scale_tril))
  # ==> tfb.Shift(loc)(tfb.ScaleMatvecTriL(scale_tril))
  ```

  The distribution's `quantile` function is used, when available:

  ```python
  d = tfd.Cauchy(loc=loc, scale=scale)
  b = tfp.experimental.bijectors.make_distribution_bijector(d)
  # ==> tfb.Inline(forward_fn=d.quantile, inverse_fn=d.cdf)(tfb.NormalCDF())
  ```

  Otherwise, a quantile function is derived by inverting the CDF:

  ```python
  d = tfd.Gamma(concentration=alpha, rate=beta)
  b = tfp.experimental.bijectors.make_distribution_bijector(d)
  # ==> tfb.Invert(
  #  tfp.experimental.bijectors.ScalarFunctionWithInferredInverse(fn=d.cdf))(
  #    tfb.NormalCDF())
  ```

  Transformed distributions are represented by chaining the
  transforming bijector with a preconditioning bijector for the base
  distribution:

  ```python
  b = tfp.experimental.bijectors.make_distribution_bijector(
    tfb.Exp(tfd.Normal(loc=10., scale=5.)))
  # ==> tfb.Exp(tfb.Shift(10.)(tfb.Scale(5.)))
  ```

  Joint distributions are represented by a joint bijector, which converts each
  component distribution to a bijector with parameters conditioned
  on the previous variables in the model. The joint bijector's inputs and
  outputs follow the structure of the joint distribution.

  ```python
  jd = tfd.JointDistributionNamed(
      {'a': tfd.InverseGamma(concentration=2., scale=1.),
       'b': lambda a: tfd.Normal(loc=3., scale=tf.sqrt(a))})
  b = tfp.experimental.bijectors.make_distribution_bijector(jd)
  whitened_jd = tfb.Invert(b)(jd)
  x = whitened_jd.sample()
  # x <=> {'a': tfd.Normal(0., 1.).sample(), 'b': tfd.Normal(0., 1.).sample()}
  ```

  """

    with tf.name_scope(name):
        event_space_bijector = (
            distribution.experimental_default_event_space_bijector())
        if event_space_bijector is None:  # Fail if the distribution is discrete.
            raise NotImplementedError(
                'Cannot transform distribution {} to a standard normal '
                'distribution.'.format(distribution))

        # Recurse over joint distributions.
        if isinstance(distribution, joint_distribution.JointDistribution):
            return joint_distribution._DefaultJointBijector(  # pylint: disable=protected-access
                distribution,
                bijector_fn=make_distribution_bijector)

        # Recurse through transformed distributions.
        if isinstance(distribution,
                      transformed_distribution.TransformedDistribution):
            return distribution.bijector(
                make_distribution_bijector(distribution.distribution))

        # If we've annotated a specific bijector for this distribution, use that.
        if isinstance(distribution, tuple(preconditioning_bijector_fns)):
            return preconditioning_bijector_fns[type(distribution)](
                distribution)

        # Otherwise, if this distribution implements a CDF and inverse CDF, build
        # a bijector from those.
        implements_cdf = False
        implements_quantile = False
        input_spec = tf.zeros(shape=distribution.event_shape,
                              dtype=distribution.dtype)
        try:
            callable_util.get_output_spec(distribution.cdf, input_spec)
            implements_cdf = True
        except NotImplementedError:
            pass
        try:
            callable_util.get_output_spec(distribution.quantile, input_spec)
            implements_quantile = True
        except NotImplementedError:
            pass
        if implements_cdf and implements_quantile:
            # This path will only trigger for scalar distributions, since multivariate
            # distributions have non-invertible CDF and so cannot define a `quantile`.
            return tfb.Inline(forward_fn=distribution.quantile,
                              inverse_fn=distribution.cdf,
                              forward_min_event_ndims=ps.rank_from_shape(
                                  distribution.event_shape_tensor,
                                  distribution.event_shape))(tfb.NormalCDF())

        # If the events are scalar, try to invert the CDF numerically.
        if implements_cdf and tf.get_static_value(
                distribution.is_scalar_event()):
            return tfb.Invert(
                scalar_function_with_inferred_inverse.
                ScalarFunctionWithInferredInverse(
                    distribution.cdf,
                    domain_constraint_fn=(event_space_bijector)))(
                        tfb.NormalCDF())

        raise NotImplementedError('Could not automatically construct a '
                                  'bijector for distribution type '
                                  '{}; it does not implement an invertible '
                                  'CDF.'.format(distribution))
コード例 #9
0
    lambda d: markov_chain._MarkovChainBijector(
        chain=d,
        transition_bijector=make_distribution_bijector(
            d.transition_fn(
                0, d.initial_state_prior.sample(seed=samplers.zeros_seed()))),
        bijector_fn=make_distribution_bijector),
    normal.Normal:
    lambda d: tfb.Shift(d.loc)(tfb.Scale(d.scale)),
    sample.Sample:
    lambda d: sample._DefaultSampleBijector(
        distribution=d.distribution,
        sample_shape=d.sample_shape,
        sum_fn=d._sum_fn(),
        bijector=make_distribution_bijector(d.distribution)),
    uniform.Uniform:
    lambda d: (tfb.Shift(d.low)(tfb.Scale(d.high - d.low)(tfb.NormalCDF())))
}
# pylint: enable=g-long-lambda,protected-access


def make_distribution_bijector(distribution,
                               name='make_distribution_bijector'):
    """Builds a bijector to approximately transform `N(0, 1)` into `distribution`.

  This represents a distribution as a bijector that
  transforms a (multivariate) standard normal distribution into the distribution
  of interest.

  Args:
    distribution: A `tfd.Distribution` instance; this may be a joint
      distribution.