コード例 #1
0
    def testJitterFn(self):
        cholesky_fn = cholesky_util.make_cholesky_with_jitter_fn(jitter=0.)

        x = tf.random.normal(shape=[2, 4, 4], seed=test_util.test_seed())
        x = tf.linalg.matmul(x, x, transpose_b=True)
        actual_chol, expected_chol = self.evaluate(
            [cholesky_fn(x), tf.linalg.cholesky(x)])
        self.assertAllClose(expected_chol, actual_chol)

        cholesky_fn = cholesky_util.make_cholesky_with_jitter_fn(jitter=1.)
        x = 3. * tf.linalg.eye(3)
        self.assertAllClose(self.evaluate(2. * tf.linalg.eye(3)),
                            self.evaluate(cholesky_fn(x)))
コード例 #2
0
    def testSchurComplementCholeskyFn(self):
        base_kernel = tfpk.ExponentiatedQuadratic([1., 2.])
        fixed_inputs = tf.ones([0, 2], np.float32)
        cholesky_fn = cholesky_util.make_cholesky_with_jitter_fn(jitter=1e-5)
        schur = tfpk.SchurComplement(base_kernel,
                                     fixed_inputs,
                                     cholesky_fn=cholesky_fn)
        schur_actual = tfpk.SchurComplement(base_kernel, fixed_inputs)
        self.assertEqual(cholesky_fn, schur.cholesky_fn)

        x = np.ones([4, 3], np.float32)
        y = np.ones([5, 3], np.float32)

        self.assertAllClose(self.evaluate(schur_actual.matrix(x, y)),
                            self.evaluate(schur.matrix(x, y)))
    def precompute_regression_model(
            kernel,
            observation_index_points,
            observations,
            observations_is_missing=None,
            index_points=None,
            observation_noise_variance=None,
            predictive_noise_variance=None,
            mean_fn=None,
            cholesky_fn=None,
            validate_args=False,
            allow_nan_stats=False,
            name='PrecomputedMultiTaskGaussianProcessRegressionModel'):
        """Returns a MTGaussianProcessRegressionModel with precomputed quantities.

    This differs from the constructor by precomputing quantities associated with
    observations in a non-tape safe way. `index_points` is the only parameter
    that is allowed to vary (i.e. is a `Variable` / changes after
    initialization).

    Specifically:

    * We make `observation_index_points` and `observations` mandatory
      parameters.
    * We precompute `kernel(observation_index_points, observation_index_points)`
      along with any other associated quantities relating to the `kernel`,
      `observations` and `observation_index_points`.

    A typical usecase would be optimizing kernel hyperparameters for a
    `MultiTaskGaussianProcess`, and computing the posterior predictive with
    respect to those optimized hyperparameters and observation / index-points
    pairs.

    WARNING: This method assumes `index_points` is the only varying parameter
    (i.e. is a `Variable` / changes after initialization) and hence is not
    tape-safe.

    Args:
      kernel: `PositiveSemidefiniteKernel`-like instance representing the
        GP's covariance function.
      observation_index_points: `float` `Tensor` representing finite collection,
        or batch of collections, of points in the index set for which some data
        has been observed. Shape has the form `[b1, ..., bB, e, f1, ..., fF]`
        where `F` is the number of feature dimensions and must equal
        `kernel.feature_ndims`, and `e` is the number (size) of index points in
        each batch. `[b1, ..., bB, e]` must be broadcastable with the shape of
        `observations`, and `[b1, ..., bB]` must be broadcastable with the
        shapes of all other batched parameters (`kernel.batch_shape`,
        `index_points`, etc). The default value is `None`, which corresponds to
        the empty set of observations, and simply results in the prior
        predictive model (a GP with noise of variance
        `predictive_noise_variance`).
      observations: `float` `Tensor` representing collection, or batch of
        collections, of observations corresponding to
        `observation_index_points`. Shape has the form `[b1, ..., bB, e, t]`
        The batch shape `[b1, ..., bB]` must be
        broadcastable with the shapes of all other batched parameters
        (`kernel.batch_shape`, `index_points`, etc.). The default value is
        `None`, which corresponds to the empty set of observations, and simply
        results in the prior predictive model (a GP with noise of variance
        `predictive_noise_variance`).
      observations_is_missing:  `bool` `Tensor` of shape `[..., e]`,
        representing a batch of boolean masks.  When `observations_is_missing`
        is not `None`, the returned distribution is conditioned only on the
        observations for which the corresponding elements of
        `observations_is_missing` are `True`.
      index_points: `float` `Tensor` representing finite collection, or batch of
        collections, of points in the index set over which the GP is defined.
        Shape has the form `[b1, ..., bB, e, f1, ..., fF]` where `F` is the
        number of feature dimensions and must equal `kernel.feature_ndims` and
        `e` is the number (size) of index points in each batch. Ultimately this
        distribution corresponds to an `e`-dimensional multivariate normal. The
        batch shape must be broadcastable with `kernel.batch_shape` and any
        batch dims yielded by `mean_fn`.
      observation_noise_variance: `float` `Tensor` representing the variance
        of the noise in the Normal likelihood distribution of the model. May be
        batched, in which case the batch shape must be broadcastable with the
        shapes of all other batched parameters (`kernel.batch_shape`,
        `index_points`, etc.).
        Default value: `None`
      predictive_noise_variance: `float` `Tensor` representing the variance in
        the posterior predictive model. If `None`, we simply re-use
        `observation_noise_variance` for the posterior predictive noise. If set
        explicitly, however, we use this value. This allows us, for example, to
        omit predictive noise variance (by setting this to zero) to obtain
        noiseless posterior predictions of function values, conditioned on noisy
        observations.
      mean_fn: Python `callable` that acts on `index_points` to produce a
        collection, or batch of collections, of mean values at `index_points`.
        Takes a `Tensor` of shape `[b1, ..., bB, f1, ..., fF]` and returns a
        `Tensor` whose shape is broadcastable with `[b1, ..., bB, t]`.
        Default value: `None` implies the constant zero function.
      cholesky_fn: Callable which takes a single (batch) matrix argument and
        returns a Cholesky-like lower triangular factor.  Default value: `None`,
        in which case `make_cholesky_with_jitter_fn` is used with the `jitter`
        parameter.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
        Default value: `False`.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value `NaN` to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
        Default value: `False`.
      name: Python `str` name prefixed to Ops created by this class.
        Default value: 'PrecomputedGaussianProcessRegressionModel'.
    Returns
      An instance of `MultiTaskGaussianProcessRegressionModel` with precomputed
      quantities associated with observations.
    """

        with tf.name_scope(name) as name:
            dtype = dtype_util.common_dtype([
                index_points,
                observation_index_points,
                observations,
                observation_noise_variance,
                predictive_noise_variance,
            ], tf.float32)

            # Convert-to-tensor arguments that are expected to not be Variables / not
            # going to change.
            observation_index_points = tf.convert_to_tensor(
                observation_index_points, dtype=dtype)
            if observation_noise_variance is not None:
                observation_noise_variance = tf.convert_to_tensor(
                    observation_noise_variance, dtype=dtype)
            observations = tf.convert_to_tensor(observations, dtype=dtype)

            if observations_is_missing is not None:
                observations_is_missing = tf.convert_to_tensor(
                    observations_is_missing)

            if cholesky_fn is None:
                cholesky_fn = cholesky_util.make_cholesky_with_jitter_fn()
            else:
                if not callable(cholesky_fn):
                    raise ValueError('`cholesky_fn` must be a Python callable')

            if mean_fn is None:
                mean_fn = lambda x: tf.zeros([1], dtype=dtype)
            else:
                if not callable(mean_fn):
                    raise ValueError('`mean_fn` must be a Python callable')

            if observations_is_missing is not None:
                # If observations are missing, there's nothing we can do to preserve the
                # operator structure, so densify.

                observation_covariance = kernel.matrix_over_all_tasks(
                    observation_index_points,
                    observation_index_points).to_dense()

                if observation_noise_variance is not None:
                    broadcast_shape = distribution_util.get_broadcast_shape(
                        observation_covariance,
                        observation_noise_variance[..., tf.newaxis,
                                                   tf.newaxis])
                    observation_covariance = tf.broadcast_to(
                        observation_covariance, broadcast_shape)
                    observation_covariance = _add_diagonal_shift(
                        observation_covariance, observation_noise_variance)
                vec_observations_is_missing = _vec(observations_is_missing)
                observation_covariance = tf.linalg.LinearOperatorFullMatrix(
                    psd_kernels_util.mask_matrix(
                        observation_covariance,
                        is_missing=vec_observations_is_missing),
                    is_non_singular=True,
                    is_positive_definite=True)
                observation_scale = cholesky_util.cholesky_from_fn(
                    observation_covariance, cholesky_fn)
            else:
                observation_scale = mtgp._compute_flattened_scale(  # pylint:disable=protected-access
                    kernel=kernel,
                    index_points=observation_index_points,
                    cholesky_fn=cholesky_fn,
                    observation_noise_variance=observation_noise_variance)

            # Note that the conditional mean is
            # k(x, o) @ (k(o, o) + sigma**2)^-1 obs. We can precompute the latter
            # term since it won't change per iteration.
            vec_diff = _vec(observations - mean_fn(observation_index_points))

            if observations_is_missing is not None:
                vec_diff = tf.where(vec_observations_is_missing,
                                    tf.zeros([], dtype=vec_diff.dtype),
                                    vec_diff)
            solve_on_observations = observation_scale.solvevec(
                observation_scale.solvevec(vec_diff), adjoint=True)

            def flattened_conditional_mean_fn(x):

                return _flattened_conditional_mean_fn_helper(
                    x,
                    kernel,
                    observations,
                    observation_index_points,
                    observations_is_missing,
                    observation_scale,
                    mean_fn,
                    solve_on_observations=solve_on_observations)

            mtgprm = MultiTaskGaussianProcessRegressionModel(
                kernel=kernel,
                observation_index_points=observation_index_points,
                observations=observations,
                index_points=index_points,
                observation_noise_variance=observation_noise_variance,
                predictive_noise_variance=predictive_noise_variance,
                cholesky_fn=cholesky_fn,
                _flattened_conditional_mean_fn=flattened_conditional_mean_fn,
                _observation_scale=observation_scale,
                validate_args=validate_args,
                allow_nan_stats=allow_nan_stats,
                name=name)

        return mtgprm
    def __init__(self,
                 kernel,
                 observation_index_points,
                 observations,
                 observations_is_missing=None,
                 index_points=None,
                 mean_fn=None,
                 observation_noise_variance=None,
                 predictive_noise_variance=None,
                 cholesky_fn=None,
                 validate_args=False,
                 allow_nan_stats=False,
                 name='MultiTaskGaussianProcessRegressionModelWithCholesky',
                 _flattened_conditional_mean_fn=None,
                 _observation_scale=None):
        """Construct a MultiTaskGaussianProcessRegressionModelWithCholesky instance.

    Args:
      kernel: `MultiTaskKernel`-like instance representing the GP's covariance
        function.
      observation_index_points: `float` `Tensor` representing finite collection,
        or batch of collections, of points in the index set for which some data
        has been observed. Shape has the form `[b1, ..., bB, e, f1, ..., fF]`
        where `F` is the number of feature dimensions and must equal
        `kernel.feature_ndims`, and `e` is the number (size) of index points in
        each batch. `[b1, ..., bB, e]` must be broadcastable with the shape of
        `observations`, and `[b1, ..., bB]` must be broadcastable with the
        shapes of all other batched parameters (`kernel.batch_shape`,
        `index_points`, etc).
      observations: `float` `Tensor` representing collection, or batch of
        collections, of observations corresponding to
        `observation_index_points`. Shape has the form `[b1, ..., bB, e, t]`,
        which must be broadcastable with the batch and example shapes of
        `observation_index_points`. The batch shape `[b1, ..., bB]` must be
        broadcastable with the shapes of all other batched parameters
        (`kernel.batch_shape`, `index_points`, etc.).
      observations_is_missing:  `bool` `Tensor` of shape `[..., e, t]`,
        representing a batch of boolean masks.  When
        `observations_is_missing` is not `None`, this distribution is
        conditioned only on the observations for which the
        corresponding elements of `observations_is_missing` are `False`.
      index_points: `float` `Tensor` representing finite collection, or batch of
        collections, of points in the index set over which the GP is defined.
        Shape has the form `[b1, ..., bB, e, f1, ..., fF]` where `F` is the
        number of feature dimensions and must equal `kernel.feature_ndims` and
        `e` is the number (size) of index points in each batch. Ultimately this
        distribution corresponds to an `e`-dimensional multivariate normal. The
        batch shape must be broadcastable with `kernel.batch_shape`.
      mean_fn: Python `callable` that acts on `index_points` to produce a (batch
        of) collection of mean values at `index_points`. Takes a `Tensor` of
        shape `[b1, ..., bB, e, f1, ..., fF]` and returns a `Tensor` whose shape
        is broadcastable with `[b1, ..., bB, e, t]`, where `t` is the number of
        tasks.
      observation_noise_variance: `float` `Tensor` representing the variance of
        the noise in the Normal likelihood distribution of the model. May be
        batched, in which case the batch shape must be broadcastable with the
        shapes of all other batched parameters (`kernel.batch_shape`,
        `index_points`, etc.).
        Default value: `None`
      predictive_noise_variance: `float` `Tensor` representing the variance in
        the posterior predictive model. If `None`, we simply re-use
        `observation_noise_variance` for the posterior predictive noise. If set
        explicitly, however, we use this value. This allows us, for example, to
        omit predictive noise variance (by setting this to zero) to obtain
        noiseless posterior predictions of function values, conditioned on noisy
        observations.
      cholesky_fn: Callable which takes a single (batch) matrix argument and
        returns a Cholesky-like lower triangular factor.  Default value: `None`,
          in which case `make_cholesky_with_jitter_fn(1e-6)` is used.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
        Default value: `False`.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value `NaN` to indicate the result
        is undefined. When `False`, an exception is raised if one or more of the
        statistic's batch members are undefined.
        Default value: `False`.
      name: Python `str` name prefixed to Ops created by this class.
        Default value: 'MultiTaskGaussianProcessRegressionModel'.
      _flattened_conditional_mean_fn: Internal parameter -- do not use.
      _observation_scale: Internal parameter -- do not use.
    """
        parameters = dict(locals())
        with tf.name_scope(name) as name:

            if not isinstance(kernel, multitask_kernel.MultiTaskKernel):
                raise ValueError('`kernel` must be a `MultiTaskKernel`.')

            dtype = dtype_util.common_dtype([
                index_points, observation_index_points, observations,
                observation_noise_variance, predictive_noise_variance
            ], tf.float32)
            index_points = tensor_util.convert_nonref_to_tensor(
                index_points, dtype=dtype, name='index_points')
            observation_index_points = tensor_util.convert_nonref_to_tensor(
                observation_index_points,
                dtype=dtype,
                name='observation_index_points')
            observations = tensor_util.convert_nonref_to_tensor(
                observations, dtype=dtype, name='observations')
            if observations_is_missing is not None:
                observations_is_missing = tensor_util.convert_nonref_to_tensor(
                    observations_is_missing, dtype=tf.bool)
            if observation_noise_variance is not None:
                observation_noise_variance = tensor_util.convert_nonref_to_tensor(
                    observation_noise_variance,
                    dtype=dtype,
                    name='observation_noise_variance')
            predictive_noise_variance = tensor_util.convert_nonref_to_tensor(
                predictive_noise_variance,
                dtype=dtype,
                name='predictive_noise_variance')
            if predictive_noise_variance is None:
                predictive_noise_variance = observation_noise_variance
            if cholesky_fn is None:
                self._cholesky_fn = cholesky_util.make_cholesky_with_jitter_fn(
                )
            else:
                if not callable(cholesky_fn):
                    raise ValueError('`cholesky_fn` must be a Python callable')
                self._cholesky_fn = cholesky_fn

            self._kernel = kernel
            self._index_points = index_points

            # Scalar or vector the size of the number of tasks.
            if mean_fn is None:

                def _mean_fn(x):
                    # Shape B1 + [E, N], where E is the number of index points, and N is
                    # the number of tasks.
                    return tf.zeros(tf.concat([
                        tf.shape(x)[:-self.kernel.feature_ndims],
                        [self.kernel.num_tasks]
                    ],
                                              axis=0),
                                    dtype=self.dtype)

                mean_fn = _mean_fn
            else:
                if not callable(mean_fn):
                    raise ValueError('`mean_fn` must be a Python callable')
            self._mean_fn = mean_fn
            self._observation_noise_variance = observation_noise_variance
            self._predictive_noise_variance = predictive_noise_variance
            self._index_ponts = index_points
            self._observation_index_points = observation_index_points
            self._observations = observations
            self._observations_is_missing = observations_is_missing

            if _flattened_conditional_mean_fn is None:

                def flattened_conditional_mean_fn(x):
                    """Flattened Conditional mean."""
                    observation_scale = _compute_observation_scale(
                        kernel,
                        observation_index_points,
                        self._cholesky_fn,
                        observation_noise_variance=self.
                        observation_noise_variance,
                        observations_is_missing=observations_is_missing)

                    return _flattened_conditional_mean_fn_helper(
                        x, self.kernel, self._observations,
                        self._observation_index_points,
                        observations_is_missing, observation_scale, mean_fn)

                _flattened_conditional_mean_fn = flattened_conditional_mean_fn

            self._flattened_conditional_mean_fn = _flattened_conditional_mean_fn
            self._observation_scale = _observation_scale

            super(MultiTaskGaussianProcessRegressionModel,
                  self).__init__(dtype=dtype,
                                 reparameterization_type=(
                                     reparameterization.FULLY_REPARAMETERIZED),
                                 validate_args=validate_args,
                                 allow_nan_stats=allow_nan_stats,
                                 parameters=parameters,
                                 name=name)
  def __init__(self,
               kernel,
               observation_index_points,
               observations,
               observations_is_missing=None,
               index_points=None,
               mean_fn=None,
               observation_noise_variance=None,
               predictive_noise_variance=None,
               cholesky_fn=None,
               validate_args=False,
               allow_nan_stats=False,
               name='MultiTaskGaussianProcessRegressionModelWithCholesky'):
    """Construct a MultiTaskGaussianProcessRegressionModelWithCholesky instance.

    WARNING: This method assumes `index_points` is the only varying parameter
    (i.e. is a `Variable` / changes after initialization) and hence is not
    tape-safe.

    Args:
      kernel: `MultiTaskKernel`-like instance representing the GP's covariance
        function.
      observation_index_points: `float` `Tensor` representing finite collection,
        or batch of collections, of points in the index set for which some data
        has been observed. Shape has the form `[b1, ..., bB, e, f1, ..., fF]`
        where `F` is the number of feature dimensions and must equal
        `kernel.feature_ndims`, and `e` is the number (size) of index points in
        each batch. `[b1, ..., bB, e]` must be broadcastable with the shape of
        `observations`, and `[b1, ..., bB]` must be broadcastable with the
        shapes of all other batched parameters (`kernel.batch_shape`,
        `index_points`, etc).
      observations: `float` `Tensor` representing collection, or batch of
        collections, of observations corresponding to
        `observation_index_points`. Shape has the form `[b1, ..., bB, e, t]`,
        which must be broadcastable with the batch and example shapes of
        `observation_index_points`. The batch shape `[b1, ..., bB]` must be
        broadcastable with the shapes of all other batched parameters
        (`kernel.batch_shape`, `index_points`, etc.).
      observations_is_missing:  `bool` `Tensor` of shape `[..., e, t]`,
        representing a batch of boolean masks.  When
        `observations_is_missing` is not `None`, this distribution is
        conditioned only on the observations for which the
        corresponding elements of `observations_is_missing` are `False`.
      index_points: `float` `Tensor` representing finite collection, or batch of
        collections, of points in the index set over which the GP is defined.
        Shape has the form `[b1, ..., bB, e, f1, ..., fF]` where `F` is the
        number of feature dimensions and must equal `kernel.feature_ndims` and
        `e` is the number (size) of index points in each batch. Ultimately this
        distribution corresponds to an `e`-dimensional multivariate normal. The
        batch shape must be broadcastable with `kernel.batch_shape`.
      mean_fn: Python `callable` that acts on `index_points` to produce a (batch
        of) collection of mean values at `index_points`. Takes a `Tensor` of
        shape `[b1, ..., bB, e, f1, ..., fF]` and returns a `Tensor` whose shape
        is broadcastable with `[b1, ..., bB, e, t]`, where `t` is the number of
        tasks.
      observation_noise_variance: `float` `Tensor` representing the variance of
        the noise in the Normal likelihood distribution of the model. May be
        batched, in which case the batch shape must be broadcastable with the
        shapes of all other batched parameters (`kernel.batch_shape`,
        `index_points`, etc.).
        Default value: `None`
      predictive_noise_variance: `float` `Tensor` representing the variance in
        the posterior predictive model. If `None`, we simply re-use
        `observation_noise_variance` for the posterior predictive noise. If set
        explicitly, however, we use this value. This allows us, for example, to
        omit predictive noise variance (by setting this to zero) to obtain
        noiseless posterior predictions of function values, conditioned on noisy
        observations.
      cholesky_fn: Callable which takes a single (batch) matrix argument and
        returns a Cholesky-like lower triangular factor.  Default value: `None`,
          in which case `make_cholesky_with_jitter_fn(1e-6)` is used.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
        Default value: `False`.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value `NaN` to indicate the result
        is undefined. When `False`, an exception is raised if one or more of the
        statistic's batch members are undefined.
        Default value: `False`.
      name: Python `str` name prefixed to Ops created by this class.
        Default value: 'MultiTaskGaussianProcessRegressionModel'.
    """
    parameters = dict(locals())
    with tf.name_scope(name) as name:

      if not isinstance(kernel, multitask_kernel.MultiTaskKernel):
        raise ValueError('`kernel` must be a `MultiTaskKernel`.')

      dtype = dtype_util.common_dtype([
          index_points, observation_index_points, observations,
          observation_noise_variance, predictive_noise_variance
      ], tf.float32)
      index_points = tensor_util.convert_nonref_to_tensor(
          index_points, dtype=dtype, name='index_points')
      observation_index_points = tf.convert_to_tensor(
          observation_index_points,
          dtype=dtype,
          name='observation_index_points')
      observations = tf.convert_to_tensor(
          observations, dtype=dtype, name='observations')
      if observations_is_missing is not None:
        observations_is_missing = tf.convert_to_tensor(
            observations_is_missing, dtype=tf.bool)
      if observation_noise_variance is not None:
        observation_noise_variance = tf.convert_to_tensor(
            observation_noise_variance,
            dtype=dtype,
            name='observation_noise_variance')
      predictive_noise_variance = tensor_util.convert_nonref_to_tensor(
          predictive_noise_variance,
          dtype=dtype,
          name='predictive_noise_variance')
      if predictive_noise_variance is None:
        predictive_noise_variance = observation_noise_variance
      if cholesky_fn is None:
        self._cholesky_fn = cholesky_util.make_cholesky_with_jitter_fn()
      else:
        if not callable(cholesky_fn):
          raise ValueError('`cholesky_fn` must be a Python callable')
        self._cholesky_fn = cholesky_fn

      self._kernel = kernel
      self._index_points = index_points

      # Scalar or vector the size of the number of tasks.
      if mean_fn is not None:
        if not callable(mean_fn):
          raise ValueError('`mean_fn` must be a Python callable')
      self._mean_fn = mean_fn
      self._observation_noise_variance = observation_noise_variance
      self._predictive_noise_variance = predictive_noise_variance
      self._index_ponts = index_points
      self._observation_index_points = observation_index_points
      self._observations = observations
      self._observations_is_missing = observations_is_missing

      observation_covariance = self.kernel.matrix_over_all_tasks(
          observation_index_points, observation_index_points)

      if observation_noise_variance is not None:
        observation_covariance = observation_covariance.to_dense()
        broadcast_shape = distribution_util.get_broadcast_shape(
            observation_covariance, observation_noise_variance[..., tf.newaxis,
                                                               tf.newaxis])
        observation_covariance = tf.broadcast_to(observation_covariance,
                                                 broadcast_shape)
        observation_covariance = _add_diagonal_shift(observation_covariance,
                                                     observation_noise_variance)
        observation_covariance = tf.linalg.LinearOperatorFullMatrix(
            observation_covariance,
            is_non_singular=True,
            is_positive_definite=True)

      if observations_is_missing is not None:
        vec_observations_is_missing = _vec(observations_is_missing)
        observation_covariance = tf.linalg.LinearOperatorFullMatrix(
            psd_kernels_util.mask_matrix(
                observation_covariance.to_dense(),
                mask=~vec_observations_is_missing),
            is_non_singular=True,
            is_positive_definite=True)

      self._observation_cholesky = cholesky_util.cholesky_from_fn(
          observation_covariance, self._cholesky_fn)

      # Note that the conditional mean is
      # k(x, o) @ (k(o, o) + sigma**2)^-1 obs. We can precompute the latter
      # term since it won't change per iteration.
      if mean_fn:
        vec_observations = _vec(observations -
                                mean_fn(observation_index_points))
      else:
        vec_observations = _vec(observations)
      if observations_is_missing is not None:
        vec_observations = tf.where(~vec_observations_is_missing,
                                    vec_observations,
                                    tf.zeros([], dtype=vec_observations.dtype))
      self._solve_on_obs = self._observation_cholesky.solvevec(
          self._observation_cholesky.solvevec(vec_observations), adjoint=True)
      super(MultiTaskGaussianProcessRegressionModel, self).__init__(
          dtype=dtype,
          reparameterization_type=(reparameterization.FULLY_REPARAMETERIZED),
          validate_args=validate_args,
          allow_nan_stats=allow_nan_stats,
          parameters=parameters,
          name=name)
コード例 #6
0
    def with_precomputed_divisor(base_kernel,
                                 fixed_inputs,
                                 fixed_inputs_mask=None,
                                 diag_shift=None,
                                 cholesky_fn=None,
                                 validate_args=False,
                                 name='PrecomputedSchurComplement'):
        """Returns a `SchurComplement` with a precomputed divisor matrix.

    This method is the same as creating a `SchurComplement` kernel, but assumes
    that `fixed_inputs`, `diag_shift` and `base_kernel` are unchanging /
    not parameterized by any mutable state. We explicitly read / concretize
    these values when this method is called, since we can precompute some
    factorizations in order to speed up subsequent invocations of the kernel.

    WARNING: This method assumes passed in arguments are not parameterized
    by mutable state (`fixed_inputs`, `diag_shift` and `base_kernel`), and hence
    is not tape-safe.

    Args:
      base_kernel: A `PositiveSemidefiniteKernel` instance, the kernel used to
        build the block matrices of which this kernel computes the Schur
        complement.
      fixed_inputs: A Tensor, representing a collection of inputs. The Schur
        complement that this kernel computes comes from a block matrix, whose
        bottom-right corner is derived from `base_kernel.matrix(fixed_inputs,
        fixed_inputs)`, and whose top-right and bottom-left pieces are
        constructed by computing the base_kernel at pairs of input locations
        together with these `fixed_inputs`. `fixed_inputs` is allowed to be an
        empty collection (either `None` or having a zero shape entry), in which
        case the kernel falls back to the trivial application of `base_kernel`
        to inputs. See class-level docstring for more details on the exact
        computation this does; `fixed_inputs` correspond to the `Z` structure
        discussed there. `fixed_inputs` is assumed to have shape `[b1, ..., bB,
        N, f1, ..., fF]` where the `b`'s are batch shape entries, the `f`'s are
        feature_shape entries, and `N` is the number of fixed inputs. Use of
        this kernel entails a 1-time O(N^3) cost of computing the Cholesky
        decomposition of the k(Z, Z) matrix. The batch shape elements of
        `fixed_inputs` must be broadcast compatible with
        `base_kernel.batch_shape`.
      fixed_inputs_mask: A boolean Tensor of shape `[..., N]`.  When `mask` is
        not None and an element of `mask` is False, the returned kernel will
        return values computed as if the divisor matrix did not contain the
        corresponding row or column.
      diag_shift: A floating point scalar to be added to the diagonal of the
        divisor_matrix before computing its Cholesky.
      cholesky_fn: Callable which takes a single (batch) matrix argument and
        returns a Cholesky-like lower triangular factor.  Default value: `None`,
        in which case `make_cholesky_with_jitter_fn` is used with the `jitter`
        parameter.
      validate_args: If `True`, parameters are checked for validity despite
        possibly degrading runtime performance.
        Default value: `False`
      name: Python `str` name prefixed to Ops created by this class.
        Default value: `"PrecomputedSchurComplement"`
    """
        dtype = dtype_util.common_dtype(
            [base_kernel, fixed_inputs, diag_shift], tf.float32)
        fixed_inputs = tf.convert_to_tensor(fixed_inputs, dtype)
        if fixed_inputs_mask is not None:
            fixed_inputs_mask = tf.convert_to_tensor(fixed_inputs_mask,
                                                     tf.bool)
        if diag_shift is not None:
            diag_shift = tf.convert_to_tensor(diag_shift, dtype)

        if cholesky_fn is None:
            from tensorflow_probability.python.distributions import cholesky_util  # pylint:disable=g-import-not-at-top
            cholesky_fn = cholesky_util.make_cholesky_with_jitter_fn()

        # TODO(b/196219597): Add a check to ensure that we have a `base_kernel`
        # that is explicitly concretized.
        divisor_matrix_cholesky = cholesky_fn(
            util.mask_matrix(_compute_divisor_matrix(
                base_kernel, diag_shift=diag_shift, fixed_inputs=fixed_inputs),
                             mask=fixed_inputs_mask))

        schur_complement = SchurComplement(
            base_kernel=base_kernel,
            fixed_inputs=fixed_inputs,
            fixed_inputs_mask=fixed_inputs_mask,
            diag_shift=diag_shift,
            cholesky_fn=cholesky_fn,
            validate_args=validate_args,
            _precomputed_divisor_matrix_cholesky=divisor_matrix_cholesky,
            name=name)

        return schur_complement
コード例 #7
0
    def __init__(self,
                 base_kernel,
                 fixed_inputs,
                 fixed_inputs_mask=None,
                 diag_shift=None,
                 cholesky_fn=None,
                 validate_args=False,
                 name='SchurComplement',
                 _precomputed_divisor_matrix_cholesky=None):
        """Construct a SchurComplement kernel instance.

    Args:
      base_kernel: A `PositiveSemidefiniteKernel` instance, the kernel used to
        build the block matrices of which this kernel computes the Schur
        complement.
      fixed_inputs: A Tensor, representing a collection of inputs. The Schur
        complement that this kernel computes comes from a block matrix, whose
        bottom-right corner is derived from `base_kernel.matrix(fixed_inputs,
        fixed_inputs)`, and whose top-right and bottom-left pieces are
        constructed by computing the base_kernel at pairs of input locations
        together with these `fixed_inputs`. `fixed_inputs` is allowed to be an
        empty collection (either `None` or having a zero shape entry), in which
        case the kernel falls back to the trivial application of `base_kernel`
        to inputs. See class-level docstring for more details on the exact
        computation this does; `fixed_inputs` correspond to the `Z` structure
        discussed there. `fixed_inputs` is assumed to have shape `[b1, ..., bB,
        N, f1, ..., fF]` where the `b`'s are batch shape entries, the `f`'s are
        feature_shape entries, and `N` is the number of fixed inputs. Use of
        this kernel entails a 1-time O(N^3) cost of computing the Cholesky
        decomposition of the k(Z, Z) matrix. The batch shape elements of
        `fixed_inputs` must be broadcast compatible with
        `base_kernel.batch_shape`.
      fixed_inputs_mask: A boolean Tensor of shape `[..., N]`.  When `mask` is
        not None and an element of `mask` is `False`, this kernel will return
        values computed as if the divisor matrix did not contain the
        corresponding row or column.
      diag_shift: A floating point scalar to be added to the diagonal of the
        divisor_matrix before computing its Cholesky.
      cholesky_fn: Callable which takes a single (batch) matrix argument and
        returns a Cholesky-like lower triangular factor.  Default value: `None`,
        in which case `make_cholesky_with_jitter_fn` is used with the `jitter`
        parameter.
      validate_args: If `True`, parameters are checked for validity despite
        possibly degrading runtime performance.
        Default value: `False`
      name: Python `str` name prefixed to Ops created by this class.
        Default value: `"SchurComplement"`
      _precomputed_divisor_matrix_cholesky: Internal parameter -- do not use.
    """
        parameters = dict(locals())

        # Delayed import to avoid circular dependency between `tfp.bijectors` and
        # `tfp.math`
        # pylint: disable=g-import-not-at-top
        from tensorflow_probability.python.bijectors import cholesky_outer_product
        from tensorflow_probability.python.bijectors import invert
        # pylint: enable=g-import-not-at-top
        with tf.name_scope(name) as name:
            dtype = dtype_util.common_dtype([
                base_kernel, fixed_inputs, diag_shift,
                _precomputed_divisor_matrix_cholesky
            ], tf.float32)
            self._base_kernel = base_kernel
            self._diag_shift = tensor_util.convert_nonref_to_tensor(
                diag_shift, dtype=dtype, name='diag_shift')
            self._fixed_inputs = tensor_util.convert_nonref_to_tensor(
                fixed_inputs, dtype=dtype, name='fixed_inputs')
            self._fixed_inputs_mask = tensor_util.convert_nonref_to_tensor(
                fixed_inputs_mask, dtype=tf.bool, name='fixed_inputs_mask')
            self._cholesky_bijector = invert.Invert(
                cholesky_outer_product.CholeskyOuterProduct())
            self._precomputed_divisor_matrix_cholesky = _precomputed_divisor_matrix_cholesky
            if self._precomputed_divisor_matrix_cholesky is not None:
                self._precomputed_divisor_matrix_cholesky = tf.convert_to_tensor(
                    self._precomputed_divisor_matrix_cholesky, dtype)
            if cholesky_fn is None:
                from tensorflow_probability.python.distributions import cholesky_util  # pylint:disable=g-import-not-at-top
                cholesky_fn = cholesky_util.make_cholesky_with_jitter_fn()
            self._cholesky_fn = cholesky_fn
            self._cholesky_bijector = invert.Invert(
                cholesky_outer_product.CholeskyOuterProduct(
                    cholesky_fn=cholesky_fn))

            super(SchurComplement, self).__init__(base_kernel.feature_ndims,
                                                  dtype=dtype,
                                                  name=name,
                                                  parameters=parameters)
コード例 #8
0
    def precompute_regression_model(
            kernel,
            observation_index_points,
            observations,
            observations_mask=None,
            index_points=None,
            observation_noise_variance=0.,
            predictive_noise_variance=None,
            mean_fn=None,
            cholesky_fn=None,
            jitter=1e-6,
            validate_args=False,
            allow_nan_stats=False,
            name='PrecomputedGaussianProcessRegressionModel'):
        """Returns a GaussianProcessRegressionModel with precomputed quantities.

    This differs from the constructor by precomputing quantities associated with
    observations in a non-tape safe way. `index_points` is the only parameter
    that is allowed to vary (i.e. is a `Variable` / changes after
    initialization).

    Specifically:

    * We make `observation_index_points` and `observations` mandatory
      parameters.
    * We precompute `kernel(observation_index_points, observation_index_points)`
      along with any other associated quantities relating to the `kernel`,
      `observations` and `observation_index_points`.

    A typical usecase would be optimizing kernel hyperparameters for a
    `GaussianProcess`, and computing the posterior predictive with respect to
    those optimized hyperparameters and observation / index-points pairs.

    WARNING: This method assumes `index_points` is the only varying parameter
    (i.e. is a `Variable` / changes after initialization) and hence is not
    tape-safe.

    Args:
      kernel: `PositiveSemidefiniteKernel`-like instance representing the
        GP's covariance function.
      observation_index_points: `float` `Tensor` representing finite collection,
        or batch of collections, of points in the index set for which some data
        has been observed. Shape has the form `[b1, ..., bB, e, f1, ..., fF]`
        where `F` is the number of feature dimensions and must equal
        `kernel.feature_ndims`, and `e` is the number (size) of index points in
        each batch. `[b1, ..., bB, e]` must be broadcastable with the shape of
        `observations`, and `[b1, ..., bB]` must be broadcastable with the
        shapes of all other batched parameters (`kernel.batch_shape`,
        `index_points`, etc). The default value is `None`, which corresponds to
        the empty set of observations, and simply results in the prior
        predictive model (a GP with noise of variance
        `predictive_noise_variance`).
      observations: `float` `Tensor` representing collection, or batch of
        collections, of observations corresponding to
        `observation_index_points`. Shape has the form `[b1, ..., bB, e]`, which
        must be brodcastable with the batch and example shapes of
        `observation_index_points`. The batch shape `[b1, ..., bB]` must be
        broadcastable with the shapes of all other batched parameters
        (`kernel.batch_shape`, `index_points`, etc.). The default value is
        `None`, which corresponds to the empty set of observations, and simply
        results in the prior predictive model (a GP with noise of variance
        `predictive_noise_variance`).
      observations_mask:  `bool` `Tensor` of shape `[..., e]`, representing
        a batch of boolean masks.  When `observation_masks` is not `None`,
        the returned distribution is conditioned only on the observations for
        which the corresponding elements of `observations_masks` are `True`.
      index_points: `float` `Tensor` representing finite collection, or batch of
        collections, of points in the index set over which the GP is defined.
        Shape has the form `[b1, ..., bB, e, f1, ..., fF]` where `F` is the
        number of feature dimensions and must equal `kernel.feature_ndims` and
        `e` is the number (size) of index points in each batch. Ultimately this
        distribution corresponds to an `e`-dimensional multivariate normal. The
        batch shape must be broadcastable with `kernel.batch_shape` and any
        batch dims yielded by `mean_fn`.
      observation_noise_variance: `float` `Tensor` representing the variance
        of the noise in the Normal likelihood distribution of the model. May be
        batched, in which case the batch shape must be broadcastable with the
        shapes of all other batched parameters (`kernel.batch_shape`,
        `index_points`, etc.).
        Default value: `0.`
      predictive_noise_variance: `float` `Tensor` representing the variance in
        the posterior predictive model. If `None`, we simply re-use
        `observation_noise_variance` for the posterior predictive noise. If set
        explicitly, however, we use this value. This allows us, for example, to
        omit predictive noise variance (by setting this to zero) to obtain
        noiseless posterior predictions of function values, conditioned on noisy
        observations.
      mean_fn: Python `callable` that acts on `index_points` to produce a
        collection, or batch of collections, of mean values at `index_points`.
        Takes a `Tensor` of shape `[b1, ..., bB, f1, ..., fF]` and returns a
        `Tensor` whose shape is broadcastable with `[b1, ..., bB]`.
        Default value: `None` implies the constant zero function.
      cholesky_fn: Callable which takes a single (batch) matrix argument and
        returns a Cholesky-like lower triangular factor.  Default value: `None`,
        in which case `make_cholesky_with_jitter_fn` is used with the `jitter`
        parameter.
      jitter: `float` scalar `Tensor` added to the diagonal of the covariance
        matrix to ensure positive definiteness of the covariance matrix.
        Default value: `1e-6`.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
        Default value: `False`.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value `NaN` to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
        Default value: `False`.
      name: Python `str` name prefixed to Ops created by this class.
        Default value: 'PrecomputedGaussianProcessRegressionModel'.
    Returns
      An instance of `GaussianProcessRegressionModel` with precomputed
      quantities associated with observations.
    """

        with tf.name_scope(name) as name:
            dtype = dtype_util.common_dtype([
                index_points, observation_index_points, observations,
                observation_noise_variance, predictive_noise_variance, jitter
            ], tf.float32)

            # Convert-to-tensor arguments that are expected to not be Variables / not
            # going to change.
            jitter = tf.convert_to_tensor(jitter, dtype=dtype)

            observation_index_points = tf.convert_to_tensor(
                observation_index_points, dtype=dtype)
            observation_noise_variance = tf.convert_to_tensor(
                observation_noise_variance, dtype=dtype)
            observations = tf.convert_to_tensor(observations, dtype=dtype)

            if observations_mask is not None:
                observations_mask = tf.convert_to_tensor(observations_mask)

            if cholesky_fn is None:
                cholesky_fn = cholesky_util.make_cholesky_with_jitter_fn(
                    jitter)

            conditional_kernel = tfpk.SchurComplement.with_precomputed_divisor(
                base_kernel=kernel,
                fixed_inputs=observation_index_points,
                fixed_inputs_mask=observations_mask,
                cholesky_fn=cholesky_fn,
                diag_shift=observation_noise_variance)

            observation_cholesky_operator = tf.linalg.LinearOperatorLowerTriangular(
                conditional_kernel.divisor_matrix_cholesky())

            if mean_fn is None:
                mean_fn = lambda x: tf.zeros([1], dtype=dtype)
            else:
                if not callable(mean_fn):
                    raise ValueError('`mean_fn` must be a Python callable')

            diff = observations - mean_fn(observation_index_points)
            if observations_mask is not None:
                diff = tf.where(observations_mask, diff,
                                tf.zeros([], dtype=diff.dtype))
            solve_on_observation = observation_cholesky_operator.solvevec(
                observation_cholesky_operator.solvevec(diff), adjoint=True)

            def conditional_mean_fn(x):
                k_x_obs = kernel.matrix(x, observation_index_points)
                if observations_mask is not None:
                    k_x_obs = tf.where(observations_mask[..., tf.newaxis, :],
                                       k_x_obs,
                                       tf.zeros([], dtype=k_x_obs.dtype))
                return mean_fn(x) + tf.linalg.matvec(k_x_obs,
                                                     solve_on_observation)

            gprm = GaussianProcessRegressionModel(
                kernel=kernel,
                observation_index_points=observation_index_points,
                observations=observations,
                index_points=index_points,
                observation_noise_variance=observation_noise_variance,
                predictive_noise_variance=predictive_noise_variance,
                cholesky_fn=cholesky_fn,
                jitter=jitter,
                _conditional_kernel=conditional_kernel,
                _conditional_mean_fn=conditional_mean_fn,
                validate_args=validate_args,
                allow_nan_stats=allow_nan_stats,
                name=name)

        return gprm
コード例 #9
0
    def __init__(self,
                 kernel,
                 index_points=None,
                 observation_index_points=None,
                 observations=None,
                 observation_noise_variance=0.,
                 predictive_noise_variance=None,
                 mean_fn=None,
                 cholesky_fn=None,
                 jitter=1e-6,
                 validate_args=False,
                 allow_nan_stats=False,
                 name='GaussianProcessRegressionModel',
                 _conditional_kernel=None,
                 _conditional_mean_fn=None):
        """Construct a GaussianProcessRegressionModel instance.

    Args:
      kernel: `PositiveSemidefiniteKernel`-like instance representing the
        GP's covariance function.
      index_points: `float` `Tensor` representing finite collection, or batch of
        collections, of points in the index set over which the GP is defined.
        Shape has the form `[b1, ..., bB, e, f1, ..., fF]` where `F` is the
        number of feature dimensions and must equal `kernel.feature_ndims` and
        `e` is the number (size) of index points in each batch. Ultimately this
        distribution corresponds to an `e`-dimensional multivariate normal. The
        batch shape must be broadcastable with `kernel.batch_shape` and any
        batch dims yielded by `mean_fn`.
      observation_index_points: `float` `Tensor` representing finite collection,
        or batch of collections, of points in the index set for which some data
        has been observed. Shape has the form `[b1, ..., bB, e, f1, ..., fF]`
        where `F` is the number of feature dimensions and must equal
        `kernel.feature_ndims`, and `e` is the number (size) of index points in
        each batch. `[b1, ..., bB, e]` must be broadcastable with the shape of
        `observations`, and `[b1, ..., bB]` must be broadcastable with the
        shapes of all other batched parameters (`kernel.batch_shape`,
        `index_points`, etc). The default value is `None`, which corresponds to
        the empty set of observations, and simply results in the prior
        predictive model (a GP with noise of variance
        `predictive_noise_variance`).
      observations: `float` `Tensor` representing collection, or batch of
        collections, of observations corresponding to
        `observation_index_points`. Shape has the form `[b1, ..., bB, e]`, which
        must be brodcastable with the batch and example shapes of
        `observation_index_points`. The batch shape `[b1, ..., bB]` must be
        broadcastable with the shapes of all other batched parameters
        (`kernel.batch_shape`, `index_points`, etc.). The default value is
        `None`, which corresponds to the empty set of observations, and simply
        results in the prior predictive model (a GP with noise of variance
        `predictive_noise_variance`).
      observation_noise_variance: `float` `Tensor` representing the variance
        of the noise in the Normal likelihood distribution of the model. May be
        batched, in which case the batch shape must be broadcastable with the
        shapes of all other batched parameters (`kernel.batch_shape`,
        `index_points`, etc.).
        Default value: `0.`
      predictive_noise_variance: `float` `Tensor` representing the variance in
        the posterior predictive model. If `None`, we simply re-use
        `observation_noise_variance` for the posterior predictive noise. If set
        explicitly, however, we use this value. This allows us, for example, to
        omit predictive noise variance (by setting this to zero) to obtain
        noiseless posterior predictions of function values, conditioned on noisy
        observations.
      mean_fn: Python `callable` that acts on `index_points` to produce a
        collection, or batch of collections, of mean values at `index_points`.
        Takes a `Tensor` of shape `[b1, ..., bB, f1, ..., fF]` and returns a
        `Tensor` whose shape is broadcastable with `[b1, ..., bB]`.
        Default value: `None` implies the constant zero function.
      cholesky_fn: Callable which takes a single (batch) matrix argument and
        returns a Cholesky-like lower triangular factor.  Default value: `None`,
        in which case `make_cholesky_with_jitter_fn` is used with the `jitter`
        parameter.
      jitter: `float` scalar `Tensor` added to the diagonal of the covariance
        matrix to ensure positive definiteness of the covariance matrix.
        This argument is ignored if `cholesky_fn` is set.
        Default value: `1e-6`.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
        Default value: `False`.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value `NaN` to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
        Default value: `False`.
      name: Python `str` name prefixed to Ops created by this class.
        Default value: 'GaussianProcessRegressionModel'.
      _conditional_kernel: Internal parameter -- do not use.
      _conditional_mean_fn: Internal parameter -- do not use.

    Raises:
      ValueError: if either
        - only one of `observations` and `observation_index_points` is given, or
        - `mean_fn` is not `None` and not callable.
    """
        parameters = dict(locals())
        with tf.name_scope(name) as name:
            dtype = dtype_util.common_dtype([
                index_points, observation_index_points, observations,
                observation_noise_variance, predictive_noise_variance, jitter
            ], tf.float32)
            index_points = tensor_util.convert_nonref_to_tensor(
                index_points, dtype=dtype, name='index_points')
            observation_index_points = tensor_util.convert_nonref_to_tensor(
                observation_index_points,
                dtype=dtype,
                name='observation_index_points')
            observations = tensor_util.convert_nonref_to_tensor(
                observations, dtype=dtype, name='observations')
            observation_noise_variance = tensor_util.convert_nonref_to_tensor(
                observation_noise_variance,
                dtype=dtype,
                name='observation_noise_variance')
            predictive_noise_variance = tensor_util.convert_nonref_to_tensor(
                predictive_noise_variance,
                dtype=dtype,
                name='predictive_noise_variance')
            if predictive_noise_variance is None:
                predictive_noise_variance = observation_noise_variance
            jitter = tensor_util.convert_nonref_to_tensor(jitter,
                                                          dtype=dtype,
                                                          name='jitter')
            if (observation_index_points is None) != (observations is None):
                raise ValueError(
                    '`observations` and `observation_index_points` must both be given '
                    'or None. Got {} and {}, respectively.'.format(
                        observations, observation_index_points))
            # Default to a constant zero function, borrowing the dtype from
            # index_points to ensure consistency.
            if mean_fn is None:
                mean_fn = lambda x: tf.zeros([1], dtype=dtype)
            else:
                if not callable(mean_fn):
                    raise ValueError('`mean_fn` must be a Python callable')

            if cholesky_fn is None:
                cholesky_fn = cholesky_util.make_cholesky_with_jitter_fn(
                    jitter)

            self._name = name
            self._observation_index_points = observation_index_points
            self._observations = observations
            self._observation_noise_variance = observation_noise_variance
            self._predictive_noise_variance = predictive_noise_variance
            self._jitter = jitter
            self._validate_args = validate_args

            with tf.name_scope('init'):
                if _conditional_kernel is None:
                    _conditional_kernel = tfpk.SchurComplement(
                        base_kernel=kernel,
                        fixed_inputs=observation_index_points,
                        cholesky_fn=cholesky_fn,
                        diag_shift=observation_noise_variance)
                # Special logic for mean_fn only; SchurComplement already handles the
                # case of empty observations (ie, falls back to base_kernel).
                if _is_empty_observation_data(
                        feature_ndims=kernel.feature_ndims,
                        observation_index_points=observation_index_points,
                        observations=observations):
                    if _conditional_mean_fn is None:
                        _conditional_mean_fn = mean_fn
                else:
                    _validate_observation_data(
                        kernel=kernel,
                        observation_index_points=observation_index_points,
                        observations=observations)

                    if _conditional_mean_fn is None:

                        def conditional_mean_fn(x):
                            """Conditional mean."""
                            observations = tf.convert_to_tensor(
                                self._observations)
                            observation_index_points = tf.convert_to_tensor(
                                self._observation_index_points)
                            k_x_obs_linop = tf.linalg.LinearOperatorFullMatrix(
                                kernel.matrix(x, observation_index_points))
                            chol_linop = tf.linalg.LinearOperatorLowerTriangular(
                                _conditional_kernel.divisor_matrix_cholesky(
                                    fixed_inputs=observation_index_points))

                            diff = observations - mean_fn(
                                observation_index_points)
                            return mean_fn(x) + k_x_obs_linop.matvec(
                                chol_linop.solvevec(chol_linop.solvevec(diff),
                                                    adjoint=True))

                        _conditional_mean_fn = conditional_mean_fn

                super(GaussianProcessRegressionModel, self).__init__(
                    kernel=_conditional_kernel,
                    mean_fn=_conditional_mean_fn,
                    index_points=index_points,
                    cholesky_fn=cholesky_fn,
                    jitter=jitter,
                    # What the GP super class calls "observation noise variance" we call
                    # here the "predictive noise variance". We use the observation noise
                    # variance for the fit/solve process above, and predictive for
                    # downstream computations like sampling.
                    observation_noise_variance=predictive_noise_variance,
                    validate_args=validate_args,
                    allow_nan_stats=allow_nan_stats,
                    name=name)
                self._parameters = parameters
コード例 #10
0
  def __init__(self,
               df,
               kernel,
               index_points=None,
               mean_fn=None,
               observation_noise_variance=0.,
               marginal_fn=None,
               cholesky_fn=None,
               jitter=1e-6,
               validate_args=False,
               allow_nan_stats=False,
               name='StudentTProcess'):
    """Instantiate a StudentTProcess Distribution.

    Args:
      df: Positive Floating-point `Tensor` representing the degrees of freedom.
        Must be greater than 2.
      kernel: `PositiveSemidefiniteKernel`-like instance representing the
        TP's covariance function.
      index_points: `float` `Tensor` representing finite (batch of) vector(s) of
        points in the index set over which the TP is defined. Shape has the form
        `[b1, ..., bB, e, f1, ..., fF]` where `F` is the number of feature
        dimensions and must equal `kernel.feature_ndims` and `e` is the number
        (size) of index points in each batch. Ultimately this distribution
        corresponds to a `e`-dimensional multivariate Student's T. The batch
        shape must be broadcastable with `kernel.batch_shape` and any batch dims
        yielded by `mean_fn`.
      mean_fn: Python `callable` that acts on `index_points` to produce a (batch
        of) vector(s) of mean values at `index_points`. Takes a `Tensor` of
        shape `[b1, ..., bB, f1, ..., fF]` and returns a `Tensor` whose shape is
        broadcastable with `[b1, ..., bB]`. Default value: `None` implies
        constant zero function.
      observation_noise_variance: `float` `Tensor` representing (batch of)
        scalar variance(s) of the noise in the Normal likelihood
        distribution of the model. If batched, the batch shape must be
        broadcastable with the shapes of all other batched parameters
        (`kernel.batch_shape`, `index_points`, etc.).
        Default value: `0.`
      marginal_fn: A Python callable that takes a location, covariance matrix,
        optional `validate_args`, `allow_nan_stats` and `name` arguments, and
        returns a multivariate normal subclass of `tfd.Distribution`.
        Default value: `None`, in which case a Cholesky-factorizing function is
        is created using `make_cholesky_factored_marginal_fn` and the
        `jitter` argument.
      cholesky_fn: Callable which takes a single (batch) matrix argument and
        returns a Cholesky-like lower triangular factor.  Default value: `None`,
        in which case `make_cholesky_with_jitter_fn` is used with the `jitter`
        parameter. At most one of `cholesky_fn` and `marginal_fn` should be set.
      jitter: `float` scalar `Tensor` added to the diagonal of the covariance
        matrix to ensure positive definiteness of the covariance matrix.
        This argument is ignored if `cholesky_fn` is set.
        Default value: `1e-6`.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
        Default value: `False`.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
        Default value: `False`.
      name: Python `str` name prefixed to Ops created by this class.
        Default value: "StudentTProcess".

    Raises:
      ValueError: if `mean_fn` is not `None` and is not callable.
    """
    parameters = dict(locals())
    with tf.name_scope(name) as name:
      dtype = dtype_util.common_dtype(
          [df, kernel, index_points, observation_noise_variance, jitter],
          tf.float32)
      df = tensor_util.convert_nonref_to_tensor(df, dtype=dtype, name='df')
      observation_noise_variance = tensor_util.convert_nonref_to_tensor(
          observation_noise_variance,
          dtype=dtype,
          name='observation_noise_variance')
      index_points = tensor_util.convert_nonref_to_tensor(
          index_points, dtype=dtype, name='index_points')
      jitter = tensor_util.convert_nonref_to_tensor(
          jitter, dtype=dtype, name='jitter')

      self._kernel = kernel
      self._index_points = index_points
      # Default to a constant zero function, borrowing the dtype from
      # index_points to ensure consistency.
      if mean_fn is None:
        mean_fn = lambda x: tf.zeros([1], dtype=dtype)
      else:
        if not callable(mean_fn):
          raise ValueError('`mean_fn` must be a Python callable')
      self._df = df
      self._observation_noise_variance = observation_noise_variance
      self._mean_fn = mean_fn
      self._jitter = jitter
      self._cholesky_fn = cholesky_fn
      if marginal_fn is not None and cholesky_fn is not None:
        raise ValueError(
            'At most one of `marginal_fn` and `cholesky_fn` should be set.')
      if marginal_fn is None:
        if self._cholesky_fn is None:
          self._cholesky_fn = cholesky_util.make_cholesky_with_jitter_fn(
              jitter)
        self._marginal_fn = make_cholesky_factored_marginal_fn(
            self._cholesky_fn)
      else:
        self._marginal_fn = marginal_fn

      with tf.name_scope('init'):
        super(StudentTProcess, self).__init__(
            dtype=dtype,
            reparameterization_type=reparameterization.FULLY_REPARAMETERIZED,
            validate_args=validate_args,
            allow_nan_stats=allow_nan_stats,
            parameters=parameters,
            name=name)
コード例 #11
0
    def __init__(self,
                 kernel,
                 index_points=None,
                 mean_fn=None,
                 observation_noise_variance=None,
                 cholesky_fn=None,
                 validate_args=False,
                 allow_nan_stats=False,
                 name='MultiTaskGaussianProcess'):
        """Constructs a MultiTaskGaussianProcess instance.

    Args:
      kernel: `MultiTaskKernel`-like instance representing the
        GP's covariance function.
      index_points: `float` `Tensor` representing finite collection, or batch of
        collections, of points in the index set over which the GP is defined.
        Shape has the form `[b1, ..., bB, e, f1, ..., fF]` where `F` is the
        number of feature dimensions and must equal `kernel.feature_ndims` and
        `e` is the number (size) of index points in each batch. Ultimately this
        distribution corresponds to an `e`-dimensional multivariate normal. The
        batch shape must be broadcastable with `kernel.batch_shape`.
      mean_fn: Python `callable` that acts on `index_points` to produce a
        (batch of) collection of mean values at `index_points`. Takes a `Tensor`
        of shape `[b1, ..., bB, e, f1, ..., fF]` and returns a `Tensor` whose
        shape is broadcastable with `[b1, ..., bB, e, t]`, where `t` is the
        number of tasks.
      observation_noise_variance: `float` `Tensor` representing the variance
        of the noise in the Normal likelihood distribution of the model. May be
        batched, in which case the batch shape must be broadcastable with the
        shapes of all other batched parameters (`kernel.batch_shape`,
        `index_points`, etc.).
        Default value: `0.`
      cholesky_fn: Callable which takes a single (batch) matrix argument and
        returns a Cholesky-like lower triangular factor.  Default value: `None`,
        in which case `make_cholesky_with_jitter_fn(1e-6)` is used.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
        Default value: `False`.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value `NaN` to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
        Default value: `False`.
      name: Python `str` name prefixed to Ops created by this class.
        Default value: 'MultiTaskGaussianProcess'.
    """
        parameters = dict(locals())
        with tf.name_scope(name) as name:
            dtype = dtype_util.common_dtype(
                [index_points, observation_noise_variance], tf.float32)
            index_points = tensor_util.convert_nonref_to_tensor(
                index_points, dtype=dtype, name='index_points')
            observation_noise_variance = tensor_util.convert_nonref_to_tensor(
                observation_noise_variance,
                dtype=dtype,
                name='observation_noise_variance')

            if not isinstance(kernel, multitask_kernel.MultiTaskKernel):
                raise ValueError('`kernel` must be a `MultiTaskKernel`.')
            self._kernel = kernel
            self._index_points = index_points

            if mean_fn is None:

                def _mean_fn(x):
                    # Shape B1 + [E, N], where E is the number of index points, and N is
                    # the number of tasks.
                    return tf.zeros(ps.concat([
                        ps.shape(x)[:-self.kernel.feature_ndims],
                        [self.kernel.num_tasks]
                    ],
                                              axis=0),
                                    dtype=dtype)

                mean_fn = _mean_fn
            else:
                if not callable(mean_fn):
                    raise ValueError('`mean_fn` must be a Python callable')
            self._mean_fn = mean_fn
            # Scalar or vector the size of the number of tasks.
            self._observation_noise_variance = observation_noise_variance

            if cholesky_fn is None:
                self._cholesky_fn = cholesky_util.make_cholesky_with_jitter_fn(
                )
            else:
                if not callable(cholesky_fn):
                    raise ValueError('`cholesky_fn` must be a Python callable')
                self._cholesky_fn = cholesky_fn

            with tf.name_scope('init'):
                super(MultiTaskGaussianProcess, self).__init__(
                    dtype=dtype,
                    reparameterization_type=reparameterization.
                    FULLY_REPARAMETERIZED,
                    validate_args=validate_args,
                    allow_nan_stats=allow_nan_stats,
                    parameters=parameters,
                    name=name)