コード例 #1
0
        def execute(batch_size, latent_size, data_size):
            data = np.random.normal(size=(data_size,
                                          latent_size)).astype(np.float32)

            def step_state(state):
                return state + np.sum(np.tensordot(data, state, ([1], [1])))

            state = np.random.normal(size=(batch_size,
                                           latent_size)).astype(np.float32)

            def choose_depth(count):
                del count
                return 3

            program = test_programs.pea_nuts_program((latent_size, ),
                                                     choose_depth, step_state)
            input_counts = np.array([3] * batch_size)
            return vm.execute(program, [input_counts, state],
                              10,
                              backend=NP_BACKEND)
コード例 #2
0
        def execute(_, backend):
            data = tf.random.normal(shape=(data_size, latent_size),
                                    dtype=np.float32)

            def step_state(state):
                return state + tf.reduce_sum(
                    input_tensor=tf.tensordot(data, state, ([1], [1])))

            state = tf.random.normal(shape=(batch_size, latent_size),
                                     dtype=np.float32)

            def choose_depth(count):
                del count
                return 2

            program = test_programs.pea_nuts_program((latent_size, ),
                                                     choose_depth, step_state)
            input_counts = np.array([3] * batch_size)
            return vm.execute(program, [input_counts, state],
                              10,
                              backend=backend)