コード例 #1
0
 def _mean(self):
     with tf.control_dependencies(self._runtime_assertions):
         probs = distribution_utils.pad_mixture_dimensions(
             self.mixture_distribution.probs_parameter(), self,
             self.mixture_distribution, self._event_ndims)  # [B, k, [1]*e]
         return tf.reduce_sum(probs * self.components_distribution.mean(),
                              axis=-1 - self._event_ndims)  # [B, E]
コード例 #2
0
    def _covariance(self):
        static_event_ndims = tensorshape_util.rank(self.event_shape)
        if static_event_ndims is not None and static_event_ndims != 1:
            # Covariance is defined only for vector distributions.
            raise NotImplementedError("covariance is not implemented")

        with tf.control_dependencies(self._runtime_assertions):
            # Law of total variance: Var(Y) = E[Var(Y|X)] + Var(E[Y|X])
            probs = distribution_utils.pad_mixture_dimensions(
                distribution_utils.pad_mixture_dimensions(
                    self.mixture_distribution.probs_parameter(), self,
                    self.mixture_distribution, self._event_ndims), self,
                self.mixture_distribution, self._event_ndims)  # [B, k, 1, 1]
            mean_cond_var = tf.reduce_sum(
                probs * self.components_distribution.covariance(),
                axis=-3)  # [B, e, e]
            var_cond_mean = tf.reduce_sum(
                probs *
                _outer_squared_difference(self.components_distribution.mean(),
                                          self._pad_sample_dims(self._mean())),
                axis=-3)  # [B, e, e]
            return mean_cond_var + var_cond_mean  # [B, e, e]
コード例 #3
0
 def _variance(self):
     with tf.control_dependencies(self._runtime_assertions):
         # Law of total variance: Var(Y) = E[Var(Y|X)] + Var(E[Y|X])
         probs = distribution_utils.pad_mixture_dimensions(
             self.mixture_distribution.probs_parameter(), self,
             self.mixture_distribution, self._event_ndims)  # [B, k, [1]*e]
         mean_cond_var = tf.reduce_sum(
             probs * self.components_distribution.variance(),
             axis=-1 - self._event_ndims)  # [B, E]
         var_cond_mean = tf.reduce_sum(probs * tf.math.squared_difference(
             self.components_distribution.mean(),
             self._pad_sample_dims(self._mean())),
                                       axis=-1 -
                                       self._event_ndims)  # [B, E]
         return mean_cond_var + var_cond_mean  # [B, E]
コード例 #4
0
 def _sample_n(self, n, seed):
     with tf.control_dependencies(self._runtime_assertions):
         seed = SeedStream(seed, salt="MixtureSameFamily")
         x = self.components_distribution.sample(
             n, seed=seed())  # [n, B, k, E]
         # TODO(jvdillon): Consider using tf.gather (by way of index unrolling).
         npdt = dtype_util.as_numpy_dtype(x.dtype)
         mask = tf.one_hot(
             indices=self.mixture_distribution.sample(
                 n, seed=seed()),  # [n, B]
             depth=self._num_components,  # == k
             on_value=npdt(1),
             off_value=npdt(0))  # [n, B, k]
         mask = distribution_utils.pad_mixture_dimensions(
             mask, self, self.mixture_distribution,
             self._event_ndims)  # [n, B, k, [1]*e]
         x = tf.reduce_sum(x * mask,
                           axis=-1 - self._event_ndims)  # [n, B, E]
         if self._reparameterize:
             x = self._reparameterize_sample(x)
         return x
コード例 #5
0
    def _distributional_transform(self, x):
        """Performs distributional transform of the mixture samples.

    Distributional transform removes the parameters from samples of a
    multivariate distribution by applying conditional CDFs:
      (F(x_1), F(x_2 | x1_), ..., F(x_d | x_1, ..., x_d-1))
    (the indexing is over the "flattened" event dimensions).
    The result is a sample of product of Uniform[0, 1] distributions.

    We assume that the components are factorized, so the conditional CDFs become
      F(x_i | x_1, ..., x_i-1) = sum_k w_i^k F_k (x_i),
    where w_i^k is the posterior mixture weight: for i > 0
      w_i^k = w_k prob_k(x_1, ..., x_i-1) / sum_k' w_k' prob_k'(x_1, ..., x_i-1)
    and w_0^k = w_k is the mixture probability of the k-th component.

    Arguments:
      x: Sample of mixture distribution

    Returns:
      Result of the distributional transform
    """

        if tensorshape_util.rank(x.shape) is None:
            # tf.math.softmax raises an error when applied to inputs of undefined
            # rank.
            raise ValueError(
                "Distributional transform does not support inputs of "
                "undefined rank.")

        # Obtain factorized components distribution and assert that it's
        # a scalar distribution.
        if isinstance(self._components_distribution, independent.Independent):
            univariate_components = self._components_distribution.distribution
        else:
            univariate_components = self._components_distribution

        with tf.control_dependencies([
                assert_util.assert_equal(
                    univariate_components.is_scalar_event(),
                    True,
                    message="`univariate_components` must have scalar event")
        ]):
            x_padded = self._pad_sample_dims(x)  # [S, B, 1, E]
            log_prob_x = univariate_components.log_prob(
                x_padded)  # [S, B, k, E]
            cdf_x = univariate_components.cdf(x_padded)  # [S, B, k, E]

            # log prob_k (x_1, ..., x_i-1)
            cumsum_log_prob_x = tf.reshape(
                tf.math.cumsum(
                    # [S*prod(B)*k, prod(E)]
                    tf.reshape(log_prob_x, [-1, self._event_size]),
                    exclusive=True,
                    axis=-1),
                tf.shape(log_prob_x))  # [S, B, k, E]

            logits_mix_prob = distribution_utils.pad_mixture_dimensions(
                self.mixture_distribution.logits_parameter(), self,
                self.mixture_distribution, self._event_ndims)  # [B, k, 1]

            # Logits of the posterior weights: log w_k + log prob_k (x_1, ..., x_i-1)
            log_posterior_weights_x = logits_mix_prob + cumsum_log_prob_x

            component_axis = tensorshape_util.rank(x.shape) - self._event_ndims
            posterior_weights_x = tf.math.softmax(log_posterior_weights_x,
                                                  axis=component_axis)
            return tf.reduce_sum(posterior_weights_x * cdf_x,
                                 axis=component_axis)
コード例 #6
0
  def _sample_n(self, n, seed=None):
    if self._use_static_graph:
      with tf.control_dependencies(self._assertions):
        # This sampling approach is almost the same as the approach used by
        # `MixtureSameFamily`. The differences are due to having a list of
        # `Distribution` objects rather than a single object, and maintaining
        # random seed management that is consistent with the non-static code
        # path.
        samples = []
        cat_samples = self.cat.sample(n, seed=seed)
        stream = SeedStream(seed, salt="Mixture")

        for c in range(self.num_components):
          samples.append(self.components[c].sample(n, seed=stream()))
        stack_axis = -1 - tensorshape_util.rank(self._static_event_shape)
        x = tf.stack(samples, axis=stack_axis)  # [n, B, k, E]
        npdt = dtype_util.as_numpy_dtype(x.dtype)
        mask = tf.one_hot(
            indices=cat_samples,  # [n, B]
            depth=self._num_components,  # == k
            on_value=npdt(1),
            off_value=npdt(0))  # [n, B, k]
        mask = distribution_util.pad_mixture_dimensions(
            mask, self, self._cat,
            tensorshape_util.rank(self._static_event_shape))  # [n, B, k, [1]*e]
        return tf.reduce_sum(x * mask, axis=stack_axis)  # [n, B, E]

    with tf.control_dependencies(self._assertions):
      n = tf.convert_to_tensor(n, name="n")
      static_n = tf.get_static_value(n)
      n = int(static_n) if static_n is not None else n
      cat_samples = self.cat.sample(n, seed=seed)

      static_samples_shape = cat_samples.shape
      if tensorshape_util.is_fully_defined(static_samples_shape):
        samples_shape = tensorshape_util.as_list(static_samples_shape)
        samples_size = tensorshape_util.num_elements(static_samples_shape)
      else:
        samples_shape = tf.shape(cat_samples)
        samples_size = tf.size(cat_samples)
      static_batch_shape = self.batch_shape
      if tensorshape_util.is_fully_defined(static_batch_shape):
        batch_shape = tensorshape_util.as_list(static_batch_shape)
        batch_size = tensorshape_util.num_elements(static_batch_shape)
      else:
        batch_shape = self.batch_shape_tensor()
        batch_size = tf.reduce_prod(batch_shape)
      static_event_shape = self.event_shape
      if tensorshape_util.is_fully_defined(static_event_shape):
        event_shape = np.array(
            tensorshape_util.as_list(static_event_shape), dtype=np.int32)
      else:
        event_shape = self.event_shape_tensor()

      # Get indices into the raw cat sampling tensor. We will
      # need these to stitch sample values back out after sampling
      # within the component partitions.
      samples_raw_indices = tf.reshape(tf.range(0, samples_size), samples_shape)

      # Partition the raw indices so that we can use
      # dynamic_stitch later to reconstruct the samples from the
      # known partitions.
      partitioned_samples_indices = tf.dynamic_partition(
          data=samples_raw_indices,
          partitions=cat_samples,
          num_partitions=self.num_components)

      # Copy the batch indices n times, as we will need to know
      # these to pull out the appropriate rows within the
      # component partitions.
      batch_raw_indices = tf.reshape(
          tf.tile(tf.range(0, batch_size), [n]), samples_shape)

      # Explanation of the dynamic partitioning below:
      #   batch indices are i.e., [0, 1, 0, 1, 0, 1]
      # Suppose partitions are:
      #     [1 1 0 0 1 1]
      # After partitioning, batch indices are cut as:
      #     [batch_indices[x] for x in 2, 3]
      #     [batch_indices[x] for x in 0, 1, 4, 5]
      # i.e.
      #     [1 1] and [0 0 0 0]
      # Now we sample n=2 from part 0 and n=4 from part 1.
      # For part 0 we want samples from batch entries 1, 1 (samples 0, 1),
      # and for part 1 we want samples from batch entries 0, 0, 0, 0
      #   (samples 0, 1, 2, 3).
      partitioned_batch_indices = tf.dynamic_partition(
          data=batch_raw_indices,
          partitions=cat_samples,
          num_partitions=self.num_components)
      samples_class = [None for _ in range(self.num_components)]

      stream = SeedStream(seed, salt="Mixture")

      for c in range(self.num_components):
        n_class = tf.size(partitioned_samples_indices[c])
        samples_class_c = self.components[c].sample(
            n_class, seed=stream())

        # Pull out the correct batch entries from each index.
        # To do this, we may have to flatten the batch shape.

        # For sample s, batch element b of component c, we get the
        # partitioned batch indices from
        # partitioned_batch_indices[c]; and shift each element by
        # the sample index. The final lookup can be thought of as
        # a matrix gather along locations (s, b) in
        # samples_class_c where the n_class rows correspond to
        # samples within this component and the batch_size columns
        # correspond to batch elements within the component.
        #
        # Thus the lookup index is
        #   lookup[c, i] = batch_size * s[i] + b[c, i]
        # for i = 0 ... n_class[c] - 1.
        lookup_partitioned_batch_indices = (
            batch_size * tf.range(n_class) + partitioned_batch_indices[c])
        samples_class_c = tf.reshape(
            samples_class_c, tf.concat([[n_class * batch_size], event_shape],
                                       0))
        samples_class_c = tf.gather(
            samples_class_c,
            lookup_partitioned_batch_indices,
            name="samples_class_c_gather")
        samples_class[c] = samples_class_c

      # Stitch back together the samples across the components.
      lhs_flat_ret = tf.dynamic_stitch(
          indices=partitioned_samples_indices, data=samples_class)
      # Reshape back to proper sample, batch, and event shape.
      ret = tf.reshape(
          lhs_flat_ret, tf.concat(
              [samples_shape, self.event_shape_tensor()], 0))
      tensorshape_util.set_shape(
          ret,
          tensorshape_util.concatenate(static_samples_shape, self.event_shape))
      return ret