def _maybe_check_valid_map_values(map_values, validate_args): """Validate `map_values` if `validate_args`==True.""" assertions = [] message = 'Rank of map_values must be 1.' if tensorshape_util.rank(map_values.shape) is not None: if tensorshape_util.rank(map_values.shape) != 1: raise ValueError(message) elif validate_args: assertions.append( assert_util.assert_rank(map_values, 1, message=message)) message = 'Size of map_values must be greater than 0.' if tensorshape_util.num_elements(map_values.shape) is not None: if tensorshape_util.num_elements(map_values.shape) == 0: raise ValueError(message) elif validate_args: assertions.append( assert_util.assert_greater(tf.size(map_values), 0, message=message)) if validate_args: assertions.append( assert_util.assert_equal( tf.math.is_strictly_increasing(map_values), True, message='map_values is not strictly increasing.')) return assertions
def _inverse_event_shape_tensor(self, output_shape): if self.validate_args: # It is not possible for a negative shape so we need only check <= 1. dependencies = [assert_util.assert_greater( output_shape[-1], 1, message="Need last dimension greater than 1.")] else: dependencies = [] with tf.control_dependencies(dependencies): return tf.concat([output_shape[:-1], [output_shape[-1] - 1]], axis=0)
def _parameter_control_dependencies(self, is_init): if not self.validate_args: return [] assertions = [] if is_init != tensor_util.is_ref(self.power): assertions.append( assert_util.assert_greater( self.power, np.ones([], self.power.dtype.as_numpy_dtype), message='`power` must be greater than 1.')) return assertions
def _assertions(self, t): if not self.validate_args: return [] return [ assert_util.assert_greater( t, dtype_util.as_numpy_dtype(t.dtype)(-1), message="Inverse transformation input must be greater than -1." ), assert_util.assert_less( t, dtype_util.as_numpy_dtype(t.dtype)(1), message="Inverse transformation input must be less than 1.") ]
def _maybe_check_valid_shape(shape, validate_args): """Check that a shape Tensor is int-type and otherwise sane.""" if not dtype_util.is_integer(shape.dtype): raise TypeError('{} dtype ({}) should be `int`-like.'.format( shape, dtype_util.name(shape.dtype))) assertions = [] message = '`{}` rank should be <= 1.' if tensorshape_util.rank(shape.shape) is not None: if tensorshape_util.rank(shape.shape) > 1: raise ValueError(message.format(shape)) elif validate_args: assertions.append( assert_util.assert_less(tf.rank(shape), 2, message=message.format(shape))) shape_ = tf.get_static_value(shape) message = '`{}` elements must have at most one `-1`.' if shape_ is not None: if sum(shape_ == -1) > 1: raise ValueError(message.format(shape)) elif validate_args: assertions.append( assert_util.assert_less(tf.reduce_sum( tf.cast(tf.equal(shape, -1), tf.int32)), 2, message=message.format(shape))) message = '`{}` elements must be either positive integers or `-1`.' if shape_ is not None: if np.any(shape_ < -1): raise ValueError(message.format(shape)) elif validate_args: assertions.append( assert_util.assert_greater(shape, -2, message=message.format(shape))) return assertions
def __init__(self, mean_direction, concentration, validate_args=False, allow_nan_stats=True, name='VonMisesFisher'): """Creates a new `VonMisesFisher` instance. Args: mean_direction: Floating-point `Tensor` with shape [B1, ... Bn, D]. A unit vector indicating the mode of the distribution, or the unit-normalized direction of the mean. (This is *not* in general the mean of the distribution; the mean is not generally in the support of the distribution.) NOTE: `D` is currently restricted to <= 5. concentration: Floating-point `Tensor` having batch shape [B1, ... Bn] broadcastable with `mean_direction`. The level of concentration of samples around the `mean_direction`. `concentration=0` indicates a uniform distribution over the unit hypersphere, and `concentration=+inf` indicates a `Deterministic` distribution (delta function) at `mean_direction`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: For known-bad arguments, i.e. unsupported event dimension. """ parameters = dict(locals()) with tf.name_scope(name) as name: dtype = dtype_util.common_dtype([mean_direction, concentration], tf.float32) mean_direction = tf.convert_to_tensor(mean_direction, name='mean_direction', dtype=dtype) concentration = tf.convert_to_tensor(concentration, name='concentration', dtype=dtype) assertions = [ assert_util.assert_non_negative( concentration, message='`concentration` must be non-negative'), assert_util.assert_greater( tf.shape(mean_direction)[-1], 1, message='`mean_direction` may not have scalar event shape' ), assert_util.assert_near( 1., tf.linalg.norm(mean_direction, axis=-1), message='`mean_direction` must be unit-length') ] if validate_args else [] static_event_dim = tf.compat.dimension_value( tensorshape_util.with_rank_at_least(mean_direction.shape, 1)[-1]) if static_event_dim is not None and static_event_dim > 5: raise ValueError('vMF ndims > 5 is not currently supported') elif validate_args: assertions += [ assert_util.assert_less_equal( tf.shape(mean_direction)[-1], 5, message='vMF ndims > 5 is not currently supported') ] with tf.control_dependencies(assertions): self._mean_direction = tf.identity(mean_direction) self._concentration = tf.identity(concentration) dtype_util.assert_same_float_dtype( [self._mean_direction, self._concentration]) # mean_direction is always reparameterized. # concentration is only for event_dim==3, via an inversion sampler. reparameterization_type = (reparameterization.FULLY_REPARAMETERIZED if static_event_dim == 3 else reparameterization.NOT_REPARAMETERIZED) super(VonMisesFisher, self).__init__( dtype=self._concentration.dtype, validate_args=validate_args, allow_nan_stats=allow_nan_stats, reparameterization_type=reparameterization_type, parameters=parameters, name=name)
def __init__(self, initial_distribution, transition_distribution, observation_distribution, num_steps, validate_args=False, allow_nan_stats=True, name="HiddenMarkovModel"): """Initialize hidden Markov model. Args: initial_distribution: A `Categorical`-like instance. Determines probability of first hidden state in Markov chain. The number of categories must match the number of categories of `transition_distribution` as well as both the rightmost batch dimension of `transition_distribution` and the rightmost batch dimension of `observation_distribution`. transition_distribution: A `Categorical`-like instance. The rightmost batch dimension indexes the probability distribution of each hidden state conditioned on the previous hidden state. observation_distribution: A `tfp.distributions.Distribution`-like instance. The rightmost batch dimension indexes the distribution of each observation conditioned on the corresponding hidden state. num_steps: The number of steps taken in Markov chain. A python `int`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. Default value: `False`. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. Default value: `True`. name: Python `str` name prefixed to Ops created by this class. Default value: "HiddenMarkovModel". Raises: ValueError: if `num_steps` is not at least 1. ValueError: if `initial_distribution` does not have scalar `event_shape`. ValueError: if `transition_distribution` does not have scalar `event_shape.` ValueError: if `transition_distribution` and `observation_distribution` are fully defined but don't have matching rightmost dimension. """ parameters = dict(locals()) # pylint: disable=protected-access with tf.name_scope(name) as name: self._runtime_assertions = [] # pylint: enable=protected-access num_steps = tf.convert_to_tensor(value=num_steps, name="num_steps") if validate_args: self._runtime_assertions += [ assert_util.assert_equal( tf.rank(num_steps), 0, message="`num_steps` must be a scalar") ] self._runtime_assertions += [ assert_util.assert_greater_equal( num_steps, 1, message="`num_steps` must be at least 1.") ] self._initial_distribution = initial_distribution self._observation_distribution = observation_distribution self._transition_distribution = transition_distribution if (initial_distribution.event_shape is not None and tensorshape_util.rank( initial_distribution.event_shape) != 0): raise ValueError( "`initial_distribution` must have scalar `event_dim`s") elif validate_args: self._runtime_assertions += [ assert_util.assert_equal( tf.shape(initial_distribution.event_shape_tensor())[0], 0, message="`initial_distribution` must have scalar" "`event_dim`s") ] if (transition_distribution.event_shape is not None and tensorshape_util.rank( transition_distribution.event_shape) != 0): raise ValueError( "`transition_distribution` must have scalar `event_dim`s") elif validate_args: self._runtime_assertions += [ assert_util.assert_equal( tf.shape( transition_distribution.event_shape_tensor())[0], 0, message="`transition_distribution` must have scalar" "`event_dim`s") ] if (transition_distribution.batch_shape is not None and tensorshape_util.rank( transition_distribution.batch_shape) == 0): raise ValueError( "`transition_distribution` can't have scalar batches") elif validate_args: self._runtime_assertions += [ assert_util.assert_greater( tf.size(transition_distribution.batch_shape_tensor()), 0, message="`transition_distribution` can't have scalar " "batches") ] if (observation_distribution.batch_shape is not None and tensorshape_util.rank( observation_distribution.batch_shape) == 0): raise ValueError( "`observation_distribution` can't have scalar batches") elif validate_args: self._runtime_assertions += [ assert_util.assert_greater( tf.size(observation_distribution.batch_shape_tensor()), 0, message="`observation_distribution` can't have scalar " "batches") ] # Infer number of hidden states and check consistency # between transitions and observations with tf.control_dependencies(self._runtime_assertions): self._num_states = ( (transition_distribution.batch_shape and transition_distribution.batch_shape[-1]) or transition_distribution.batch_shape_tensor()[-1]) observation_states = ( (observation_distribution.batch_shape and observation_distribution.batch_shape[-1]) or observation_distribution.batch_shape_tensor()[-1]) if (tf.is_tensor(self._num_states) or tf.is_tensor(observation_states)): if validate_args: self._runtime_assertions += [ assert_util.assert_equal( self._num_states, observation_states, message="`transition_distribution` and " "`observation_distribution` must agree on " "last dimension of batch size") ] elif self._num_states != observation_states: raise ValueError("`transition_distribution` and " "`observation_distribution` must agree on " "last dimension of batch size") self._log_init = _extract_log_probs(self._num_states, initial_distribution) self._log_trans = _extract_log_probs(self._num_states, transition_distribution) self._num_steps = num_steps self._num_states = tf.shape(self._log_init)[-1] self._underlying_event_rank = tf.size( self._observation_distribution.event_shape_tensor()) num_steps_ = tf.get_static_value(num_steps) if num_steps_ is not None: self.static_event_shape = tf.TensorShape([ num_steps_ ]).concatenate(self._observation_distribution.event_shape) else: self.static_event_shape = None with tf.control_dependencies(self._runtime_assertions): self.static_batch_shape = tf.broadcast_static_shape( self._initial_distribution.batch_shape, tf.broadcast_static_shape( self._transition_distribution.batch_shape[:-1], self._observation_distribution.batch_shape[:-1])) # pylint: disable=protected-access super(HiddenMarkovModel, self).__init__( dtype=self._observation_distribution.dtype, reparameterization_type=reparameterization.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, name=name) # pylint: enable=protected-access self._parameters = parameters