コード例 #1
0
def _maybe_check_valid_map_values(map_values, validate_args):
    """Validate `map_values` if `validate_args`==True."""
    assertions = []

    message = 'Rank of map_values must be 1.'
    if tensorshape_util.rank(map_values.shape) is not None:
        if tensorshape_util.rank(map_values.shape) != 1:
            raise ValueError(message)
    elif validate_args:
        assertions.append(
            assert_util.assert_rank(map_values, 1, message=message))

    message = 'Size of map_values must be greater than 0.'
    if tensorshape_util.num_elements(map_values.shape) is not None:
        if tensorshape_util.num_elements(map_values.shape) == 0:
            raise ValueError(message)
    elif validate_args:
        assertions.append(
            assert_util.assert_greater(tf.size(map_values), 0,
                                       message=message))

    if validate_args:
        assertions.append(
            assert_util.assert_equal(
                tf.math.is_strictly_increasing(map_values),
                True,
                message='map_values is not strictly increasing.'))

    return assertions
コード例 #2
0
 def _inverse_event_shape_tensor(self, output_shape):
   if self.validate_args:
     # It is not possible for a negative shape so we need only check <= 1.
     dependencies = [assert_util.assert_greater(
         output_shape[-1], 1, message="Need last dimension greater than 1.")]
   else:
     dependencies = []
   with tf.control_dependencies(dependencies):
     return tf.concat([output_shape[:-1], [output_shape[-1] - 1]], axis=0)
コード例 #3
0
ファイル: zipf.py プロジェクト: HackerShohag/SuggestBot-bn
 def _parameter_control_dependencies(self, is_init):
     if not self.validate_args:
         return []
     assertions = []
     if is_init != tensor_util.is_ref(self.power):
         assertions.append(
             assert_util.assert_greater(
                 self.power,
                 np.ones([], self.power.dtype.as_numpy_dtype),
                 message='`power` must be greater than 1.'))
     return assertions
コード例 #4
0
 def _assertions(self, t):
     if not self.validate_args:
         return []
     return [
         assert_util.assert_greater(
             t,
             dtype_util.as_numpy_dtype(t.dtype)(-1),
             message="Inverse transformation input must be greater than -1."
         ),
         assert_util.assert_less(
             t,
             dtype_util.as_numpy_dtype(t.dtype)(1),
             message="Inverse transformation input must be less than 1.")
     ]
コード例 #5
0
def _maybe_check_valid_shape(shape, validate_args):
    """Check that a shape Tensor is int-type and otherwise sane."""
    if not dtype_util.is_integer(shape.dtype):
        raise TypeError('{} dtype ({}) should be `int`-like.'.format(
            shape, dtype_util.name(shape.dtype)))

    assertions = []

    message = '`{}` rank should be <= 1.'
    if tensorshape_util.rank(shape.shape) is not None:
        if tensorshape_util.rank(shape.shape) > 1:
            raise ValueError(message.format(shape))
    elif validate_args:
        assertions.append(
            assert_util.assert_less(tf.rank(shape),
                                    2,
                                    message=message.format(shape)))

    shape_ = tf.get_static_value(shape)

    message = '`{}` elements must have at most one `-1`.'
    if shape_ is not None:
        if sum(shape_ == -1) > 1:
            raise ValueError(message.format(shape))
    elif validate_args:
        assertions.append(
            assert_util.assert_less(tf.reduce_sum(
                tf.cast(tf.equal(shape, -1), tf.int32)),
                                    2,
                                    message=message.format(shape)))

    message = '`{}` elements must be either positive integers or `-1`.'
    if shape_ is not None:
        if np.any(shape_ < -1):
            raise ValueError(message.format(shape))
    elif validate_args:
        assertions.append(
            assert_util.assert_greater(shape,
                                       -2,
                                       message=message.format(shape)))

    return assertions
コード例 #6
0
    def __init__(self,
                 mean_direction,
                 concentration,
                 validate_args=False,
                 allow_nan_stats=True,
                 name='VonMisesFisher'):
        """Creates a new `VonMisesFisher` instance.

    Args:
      mean_direction: Floating-point `Tensor` with shape [B1, ... Bn, D].
        A unit vector indicating the mode of the distribution, or the
        unit-normalized direction of the mean. (This is *not* in general the
        mean of the distribution; the mean is not generally in the support of
        the distribution.) NOTE: `D` is currently restricted to <= 5.
      concentration: Floating-point `Tensor` having batch shape [B1, ... Bn]
        broadcastable with `mean_direction`. The level of concentration of
        samples around the `mean_direction`. `concentration=0` indicates a
        uniform distribution over the unit hypersphere, and `concentration=+inf`
        indicates a `Deterministic` distribution (delta function) at
        `mean_direction`.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      ValueError: For known-bad arguments, i.e. unsupported event dimension.
    """
        parameters = dict(locals())
        with tf.name_scope(name) as name:
            dtype = dtype_util.common_dtype([mean_direction, concentration],
                                            tf.float32)
            mean_direction = tf.convert_to_tensor(mean_direction,
                                                  name='mean_direction',
                                                  dtype=dtype)
            concentration = tf.convert_to_tensor(concentration,
                                                 name='concentration',
                                                 dtype=dtype)
            assertions = [
                assert_util.assert_non_negative(
                    concentration,
                    message='`concentration` must be non-negative'),
                assert_util.assert_greater(
                    tf.shape(mean_direction)[-1],
                    1,
                    message='`mean_direction` may not have scalar event shape'
                ),
                assert_util.assert_near(
                    1.,
                    tf.linalg.norm(mean_direction, axis=-1),
                    message='`mean_direction` must be unit-length')
            ] if validate_args else []
            static_event_dim = tf.compat.dimension_value(
                tensorshape_util.with_rank_at_least(mean_direction.shape,
                                                    1)[-1])
            if static_event_dim is not None and static_event_dim > 5:
                raise ValueError('vMF ndims > 5 is not currently supported')
            elif validate_args:
                assertions += [
                    assert_util.assert_less_equal(
                        tf.shape(mean_direction)[-1],
                        5,
                        message='vMF ndims > 5 is not currently supported')
                ]
            with tf.control_dependencies(assertions):
                self._mean_direction = tf.identity(mean_direction)
                self._concentration = tf.identity(concentration)
            dtype_util.assert_same_float_dtype(
                [self._mean_direction, self._concentration])
            # mean_direction is always reparameterized.
            # concentration is only for event_dim==3, via an inversion sampler.
            reparameterization_type = (reparameterization.FULLY_REPARAMETERIZED
                                       if static_event_dim == 3 else
                                       reparameterization.NOT_REPARAMETERIZED)
            super(VonMisesFisher, self).__init__(
                dtype=self._concentration.dtype,
                validate_args=validate_args,
                allow_nan_stats=allow_nan_stats,
                reparameterization_type=reparameterization_type,
                parameters=parameters,
                name=name)
コード例 #7
0
    def __init__(self,
                 initial_distribution,
                 transition_distribution,
                 observation_distribution,
                 num_steps,
                 validate_args=False,
                 allow_nan_stats=True,
                 name="HiddenMarkovModel"):
        """Initialize hidden Markov model.

    Args:
      initial_distribution: A `Categorical`-like instance.
        Determines probability of first hidden state in Markov chain.
        The number of categories must match the number of categories of
        `transition_distribution` as well as both the rightmost batch
        dimension of `transition_distribution` and the rightmost batch
        dimension of `observation_distribution`.
      transition_distribution: A `Categorical`-like instance.
        The rightmost batch dimension indexes the probability distribution
        of each hidden state conditioned on the previous hidden state.
      observation_distribution: A `tfp.distributions.Distribution`-like
        instance.  The rightmost batch dimension indexes the distribution
        of each observation conditioned on the corresponding hidden state.
      num_steps: The number of steps taken in Markov chain. A python `int`.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
        Default value: `False`.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
        result is undefined. When `False`, an exception is raised if one or
        more of the statistic's batch members are undefined.
        Default value: `True`.
      name: Python `str` name prefixed to Ops created by this class.
        Default value: "HiddenMarkovModel".

    Raises:
      ValueError: if `num_steps` is not at least 1.
      ValueError: if `initial_distribution` does not have scalar `event_shape`.
      ValueError: if `transition_distribution` does not have scalar
        `event_shape.`
      ValueError: if `transition_distribution` and `observation_distribution`
        are fully defined but don't have matching rightmost dimension.
    """

        parameters = dict(locals())

        # pylint: disable=protected-access
        with tf.name_scope(name) as name:
            self._runtime_assertions = []  # pylint: enable=protected-access

            num_steps = tf.convert_to_tensor(value=num_steps, name="num_steps")
            if validate_args:
                self._runtime_assertions += [
                    assert_util.assert_equal(
                        tf.rank(num_steps),
                        0,
                        message="`num_steps` must be a scalar")
                ]
                self._runtime_assertions += [
                    assert_util.assert_greater_equal(
                        num_steps,
                        1,
                        message="`num_steps` must be at least 1.")
                ]

            self._initial_distribution = initial_distribution
            self._observation_distribution = observation_distribution
            self._transition_distribution = transition_distribution

            if (initial_distribution.event_shape is not None
                    and tensorshape_util.rank(
                        initial_distribution.event_shape) != 0):
                raise ValueError(
                    "`initial_distribution` must have scalar `event_dim`s")
            elif validate_args:
                self._runtime_assertions += [
                    assert_util.assert_equal(
                        tf.shape(initial_distribution.event_shape_tensor())[0],
                        0,
                        message="`initial_distribution` must have scalar"
                        "`event_dim`s")
                ]

            if (transition_distribution.event_shape is not None
                    and tensorshape_util.rank(
                        transition_distribution.event_shape) != 0):
                raise ValueError(
                    "`transition_distribution` must have scalar `event_dim`s")
            elif validate_args:
                self._runtime_assertions += [
                    assert_util.assert_equal(
                        tf.shape(
                            transition_distribution.event_shape_tensor())[0],
                        0,
                        message="`transition_distribution` must have scalar"
                        "`event_dim`s")
                ]

            if (transition_distribution.batch_shape is not None
                    and tensorshape_util.rank(
                        transition_distribution.batch_shape) == 0):
                raise ValueError(
                    "`transition_distribution` can't have scalar batches")
            elif validate_args:
                self._runtime_assertions += [
                    assert_util.assert_greater(
                        tf.size(transition_distribution.batch_shape_tensor()),
                        0,
                        message="`transition_distribution` can't have scalar "
                        "batches")
                ]

            if (observation_distribution.batch_shape is not None
                    and tensorshape_util.rank(
                        observation_distribution.batch_shape) == 0):
                raise ValueError(
                    "`observation_distribution` can't have scalar batches")
            elif validate_args:
                self._runtime_assertions += [
                    assert_util.assert_greater(
                        tf.size(observation_distribution.batch_shape_tensor()),
                        0,
                        message="`observation_distribution` can't have scalar "
                        "batches")
                ]

            # Infer number of hidden states and check consistency
            # between transitions and observations
            with tf.control_dependencies(self._runtime_assertions):
                self._num_states = (
                    (transition_distribution.batch_shape
                     and transition_distribution.batch_shape[-1])
                    or transition_distribution.batch_shape_tensor()[-1])

                observation_states = (
                    (observation_distribution.batch_shape
                     and observation_distribution.batch_shape[-1])
                    or observation_distribution.batch_shape_tensor()[-1])

            if (tf.is_tensor(self._num_states)
                    or tf.is_tensor(observation_states)):
                if validate_args:
                    self._runtime_assertions += [
                        assert_util.assert_equal(
                            self._num_states,
                            observation_states,
                            message="`transition_distribution` and "
                            "`observation_distribution` must agree on "
                            "last dimension of batch size")
                    ]
            elif self._num_states != observation_states:
                raise ValueError("`transition_distribution` and "
                                 "`observation_distribution` must agree on "
                                 "last dimension of batch size")

            self._log_init = _extract_log_probs(self._num_states,
                                                initial_distribution)
            self._log_trans = _extract_log_probs(self._num_states,
                                                 transition_distribution)

            self._num_steps = num_steps
            self._num_states = tf.shape(self._log_init)[-1]

            self._underlying_event_rank = tf.size(
                self._observation_distribution.event_shape_tensor())

            num_steps_ = tf.get_static_value(num_steps)
            if num_steps_ is not None:
                self.static_event_shape = tf.TensorShape([
                    num_steps_
                ]).concatenate(self._observation_distribution.event_shape)
            else:
                self.static_event_shape = None

            with tf.control_dependencies(self._runtime_assertions):
                self.static_batch_shape = tf.broadcast_static_shape(
                    self._initial_distribution.batch_shape,
                    tf.broadcast_static_shape(
                        self._transition_distribution.batch_shape[:-1],
                        self._observation_distribution.batch_shape[:-1]))

            # pylint: disable=protected-access
            super(HiddenMarkovModel, self).__init__(
                dtype=self._observation_distribution.dtype,
                reparameterization_type=reparameterization.NOT_REPARAMETERIZED,
                validate_args=validate_args,
                allow_nan_stats=allow_nan_stats,
                parameters=parameters,
                name=name)
            # pylint: enable=protected-access

            self._parameters = parameters