コード例 #1
0
ファイル: linalg.py プロジェクト: HackerShohag/SuggestBot-bn
def matrix_rank(a, tol=None, validate_args=False, name=None):
    """Compute the matrix rank; the number of non-zero SVD singular values.

  Arguments:
    a: (Batch of) `float`-like matrix-shaped `Tensor`(s) which are to be
      pseudo-inverted.
    tol: Threshold below which the singular value is counted as 'zero'.
      Default value: `None` (i.e., `eps * max(rows, cols) * max(singular_val)`).
    validate_args: When `True`, additional assertions might be embedded in the
      graph.
      Default value: `False` (i.e., no graph assertions are added).
    name: Python `str` prefixed to ops created by this function.
      Default value: 'matrix_rank'.

  Returns:
    matrix_rank: (Batch of) `int32` scalars representing the number of non-zero
      singular values.
  """
    with tf.name_scope(name or 'matrix_rank'):
        a = tf.convert_to_tensor(a, dtype_hint=tf.float32, name='a')
        assertions = _maybe_validate_matrix(a, validate_args)
        if assertions:
            with tf.control_dependencies(assertions):
                a = tf.identity(a)
        s = tf.linalg.svd(a, compute_uv=False)
        if tol is None:
            if tensorshape_util.is_fully_defined(a.shape[-2:]):
                m = np.max(a.shape[-2:].as_list())
            else:
                m = tf.reduce_max(tf.shape(a)[-2:])
            eps = np.finfo(dtype_util.as_numpy_dtype(a.dtype)).eps
            tol = (eps * tf.cast(m, a.dtype) *
                   tf.reduce_max(s, axis=-1, keepdims=True))
        return tf.reduce_sum(tf.cast(s > tol, tf.int32), axis=-1)
コード例 #2
0
    def _entropy(self):
        if self._logits is None:
            # If we only have probs, there's not much we can do to ensure numerical
            # precision.
            probs = tf.convert_to_tensor(self._probs)
            return -tf.reduce_sum(
                tf.math.multiply_no_nan(tf.math.log(probs), probs), axis=-1)

        # The following result can be derived as follows. Write log(p[i]) as:
        # s[i]-m-lse(s[i]-m) where m=max(s), then you have:
        #   sum_i exp(s[i]-m-lse(s-m)) (s[i] - m - lse(s-m))
        #   = -m - lse(s-m) + sum_i s[i] exp(s[i]-m-lse(s-m))
        #   = -m - lse(s-m) + (1/exp(lse(s-m))) sum_i s[i] exp(s[i]-m)
        #   = -m - lse(s-m) + (1/sumexp(s-m)) sum_i s[i] exp(s[i]-m)
        # Write x[i]=s[i]-m then you have:
        #   = -m - lse(x) + (1/sum_exp(x)) sum_i s[i] exp(x[i])
        # Negating all of this result is the Shanon (discrete) entropy.
        logits = tf.convert_to_tensor(self._logits)
        m = tf.reduce_max(logits, axis=-1, keepdims=True)
        x = logits - m
        lse_logits = m[..., 0] + tf.reduce_logsumexp(x, axis=-1)
        sum_exp_x = tf.reduce_sum(tf.math.exp(x), axis=-1)
        return lse_logits - tf.reduce_sum(tf.math.multiply_no_nan(
            logits, tf.math.exp(x)),
                                          axis=-1) / sum_exp_x
コード例 #3
0
ファイル: linalg.py プロジェクト: HackerShohag/SuggestBot-bn
 def cond(m, pchol, perm, matrix_diag):
     """Condition for `tf.while_loop` continuation."""
     del pchol
     del perm
     error = tf.linalg.norm(matrix_diag, ord=1, axis=-1)
     max_err = tf.reduce_max(error / orig_error)
     return (m < max_rank) & (tf.equal(m, 0) | (max_err > diag_rtol))
コード例 #4
0
 def forward_step(previous_step_pair,
                  log_prob_observation):
     log_prob_previous = previous_step_pair[0]
     log_prob = (
         log_prob_previous[..., tf.newaxis] +
         self._log_trans +
         log_prob_observation[..., tf.newaxis, :])
     most_likely_given_successor = tf.argmax(log_prob,
                                             axis=-2)
     max_log_p_given_successor = tf.reduce_max(
         input_tensor=log_prob, axis=-2)
     return (max_log_p_given_successor,
             most_likely_given_successor)
コード例 #5
0
ファイル: linalg.py プロジェクト: HackerShohag/SuggestBot-bn
def pinv(a, rcond=None, validate_args=False, name=None):
    """Compute the Moore-Penrose pseudo-inverse of a matrix.

  Calculate the [generalized inverse of a matrix](
  https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse) using its
  singular-value decomposition (SVD) and including all large singular values.

  The pseudo-inverse of a matrix `A`, is defined as: 'the matrix that 'solves'
  [the least-squares problem] `A @ x = b`,' i.e., if `x_hat` is a solution, then
  `A_pinv` is the matrix such that `x_hat = A_pinv @ b`. It can be shown that if
  `U @ Sigma @ V.T = A` is the singular value decomposition of `A`, then
  `A_pinv = V @ inv(Sigma) U^T`. [(Strang, 1980)][1]

  This function is analogous to [`numpy.linalg.pinv`](
  https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.pinv.html).
  It differs only in default value of `rcond`. In `numpy.linalg.pinv`, the
  default `rcond` is `1e-15`. Here the default is
  `10. * max(num_rows, num_cols) * np.finfo(dtype).eps`.

  Args:
    a: (Batch of) `float`-like matrix-shaped `Tensor`(s) which are to be
      pseudo-inverted.
    rcond: `Tensor` of small singular value cutoffs.  Singular values smaller
      (in modulus) than `rcond` * largest_singular_value (again, in modulus) are
      set to zero. Must broadcast against `tf.shape(a)[:-2]`.
      Default value: `10. * max(num_rows, num_cols) * np.finfo(a.dtype).eps`.
    validate_args: When `True`, additional assertions might be embedded in the
      graph.
      Default value: `False` (i.e., no graph assertions are added).
    name: Python `str` prefixed to ops created by this function.
      Default value: 'pinv'.

  Returns:
    a_pinv: The pseudo-inverse of input `a`. Has same shape as `a` except
      rightmost two dimensions are transposed.

  Raises:
    TypeError: if input `a` does not have `float`-like `dtype`.
    ValueError: if input `a` has fewer than 2 dimensions.

  #### Examples

  ```python
  from tensorflow_probability.python.internal.backend import jax as tf
  import tensorflow_probability as tfp; tfp = tfp.experimental.substrates.jax

  a = tf.constant([[1.,  0.4,  0.5],
                   [0.4, 0.2,  0.25],
                   [0.5, 0.25, 0.35]])
  tf.matmul(tfp.math.pinv(a), a)
  # ==> array([[1., 0., 0.],
               [0., 1., 0.],
               [0., 0., 1.]], dtype=float32)

  a = tf.constant([[1.,  0.4,  0.5,  1.],
                   [0.4, 0.2,  0.25, 2.],
                   [0.5, 0.25, 0.35, 3.]])
  tf.matmul(tfp.math.pinv(a), a)
  # ==> array([[ 0.76,  0.37,  0.21, -0.02],
               [ 0.37,  0.43, -0.33,  0.02],
               [ 0.21, -0.33,  0.81,  0.01],
               [-0.02,  0.02,  0.01,  1.  ]], dtype=float32)
  ```

  #### References

  [1]: G. Strang. 'Linear Algebra and Its Applications, 2nd Ed.' Academic Press,
       Inc., 1980, pp. 139-142.
  """
    with tf.name_scope(name or 'pinv'):
        a = tf.convert_to_tensor(a, name='a')

        assertions = _maybe_validate_matrix(a, validate_args)
        if assertions:
            with tf.control_dependencies(assertions):
                a = tf.identity(a)

        dtype = dtype_util.as_numpy_dtype(a.dtype)

        if rcond is None:

            def get_dim_size(dim):
                if tf.compat.dimension_value(a.shape[dim]) is not None:
                    return tf.compat.dimension_value(a.shape[dim])
                return tf.shape(a)[dim]

            num_rows = get_dim_size(-2)
            num_cols = get_dim_size(-1)
            if isinstance(num_rows, int) and isinstance(num_cols, int):
                max_rows_cols = float(max(num_rows, num_cols))
            else:
                max_rows_cols = tf.cast(tf.maximum(num_rows, num_cols), dtype)
            rcond = 10. * max_rows_cols * np.finfo(dtype).eps

        rcond = tf.convert_to_tensor(rcond, dtype=dtype, name='rcond')

        # Calculate pseudo inverse via SVD.
        # Note: if a is symmetric then u == v. (We might observe additional
        # performance by explicitly setting `v = u` in such cases.)
        [
            singular_values,  # Sigma
            left_singular_vectors,  # U
            right_singular_vectors,  # V
        ] = tf.linalg.svd(a, full_matrices=False, compute_uv=True)

        # Saturate small singular values to inf. This has the effect of make
        # `1. / s = 0.` while not resulting in `NaN` gradients.
        cutoff = rcond * tf.reduce_max(singular_values, axis=-1)
        singular_values = tf.where(singular_values > cutoff[..., tf.newaxis],
                                   singular_values, np.array(np.inf, dtype))

        # Although `a == tf.matmul(u, s * v, transpose_b=True)` we swap
        # `u` and `v` here so that `tf.matmul(pinv(A), A) = tf.eye()`, i.e.,
        # a matrix inverse has 'transposed' semantics.
        a_pinv = tf.matmul(right_singular_vectors /
                           singular_values[..., tf.newaxis, :],
                           left_singular_vectors,
                           adjoint_b=True)

        if tensorshape_util.rank(a.shape) is not None:
            a_pinv.set_shape(a.shape[:-2].concatenate(
                [a.shape[-1], a.shape[-2]]))

        return a_pinv
コード例 #6
0
ファイル: linalg.py プロジェクト: HackerShohag/SuggestBot-bn
def pivoted_cholesky(matrix, max_rank, diag_rtol=1e-3, name=None):
    """Computes the (partial) pivoted cholesky decomposition of `matrix`.

  The pivoted Cholesky is a low rank approximation of the Cholesky decomposition
  of `matrix`, i.e. as described in [(Harbrecht et al., 2012)][1]. The
  currently-worst-approximated diagonal element is selected as the pivot at each
  iteration. This yields from a `[B1...Bn, N, N]` shaped `matrix` a `[B1...Bn,
  N, K]` shaped rank-`K` approximation `lr` such that `lr @ lr.T ~= matrix`.
  Note that, unlike the Cholesky decomposition, `lr` is not triangular even in
  a rectangular-matrix sense. However, under a permutation it could be made
  triangular (it has one more zero in each column as you move to the right).

  Such a matrix can be useful as a preconditioner for conjugate gradient
  optimization, i.e. as in [(Wang et al. 2019)][2], as matmuls and solves can be
  cheaply done via the Woodbury matrix identity, as implemented by
  `tf.linalg.LinearOperatorLowRankUpdate`.

  Args:
    matrix: Floating point `Tensor` batch of symmetric, positive definite
      matrices.
    max_rank: Scalar `int` `Tensor`, the rank at which to truncate the
      approximation.
    diag_rtol: Scalar floating point `Tensor` (same dtype as `matrix`). If the
      errors of all diagonal elements of `lr @ lr.T` are each lower than
      `element * diag_rtol`, iteration is permitted to terminate early.
    name: Optional name for the op.

  Returns:
    lr: Low rank pivoted Cholesky approximation of `matrix`.

  #### References

  [1]: H Harbrecht, M Peters, R Schneider. On the low-rank approximation by the
       pivoted Cholesky decomposition. _Applied numerical mathematics_,
       62(4):428-440, 2012.

  [2]: K. A. Wang et al. Exact Gaussian Processes on a Million Data Points.
       _arXiv preprint arXiv:1903.08114_, 2019. https://arxiv.org/abs/1903.08114
  """
    with tf.name_scope(name or 'pivoted_cholesky'):
        dtype = dtype_util.common_dtype([matrix, diag_rtol],
                                        dtype_hint=tf.float32)
        matrix = tf.convert_to_tensor(matrix, name='matrix', dtype=dtype)
        if tensorshape_util.rank(matrix.shape) is None:
            raise NotImplementedError(
                'Rank of `matrix` must be known statically')

        max_rank = tf.convert_to_tensor(max_rank,
                                        name='max_rank',
                                        dtype=tf.int64)
        max_rank = tf.minimum(
            max_rank,
            prefer_static.shape(matrix, out_type=tf.int64)[-1])
        diag_rtol = tf.convert_to_tensor(diag_rtol,
                                         dtype=dtype,
                                         name='diag_rtol')
        matrix_diag = tf.linalg.diag_part(matrix)
        # matrix is P.D., therefore all matrix_diag > 0, so we don't need abs.
        orig_error = tf.reduce_max(matrix_diag, axis=-1)

        def cond(m, pchol, perm, matrix_diag):
            """Condition for `tf.while_loop` continuation."""
            del pchol
            del perm
            error = tf.linalg.norm(matrix_diag, ord=1, axis=-1)
            max_err = tf.reduce_max(error / orig_error)
            return (m < max_rank) & (tf.equal(m, 0) | (max_err > diag_rtol))

        batch_dims = tensorshape_util.rank(matrix.shape) - 2

        def batch_gather(params, indices, axis=-1):
            return tf.gather(params, indices, axis=axis, batch_dims=batch_dims)

        def body(m, pchol, perm, matrix_diag):
            """Body of a single `tf.while_loop` iteration."""
            # Here is roughly a numpy, non-batched version of what's going to happen.
            # (See also Algorithm 1 of Harbrecht et al.)
            # 1: maxi = np.argmax(matrix_diag[perm[m:]]) + m
            # 2: maxval = matrix_diag[perm][maxi]
            # 3: perm[m], perm[maxi] = perm[maxi], perm[m]
            # 4: row = matrix[perm[m]][perm[m + 1:]]
            # 5: row -= np.sum(pchol[:m][perm[m + 1:]] * pchol[:m][perm[m]]], axis=-2)
            # 6: pivot = np.sqrt(maxval); row /= pivot
            # 7: row = np.concatenate([[[pivot]], row], -1)
            # 8: matrix_diag[perm[m:]] -= row**2
            # 9: pchol[m, perm[m:]] = row

            # Find the maximal position of the (remaining) permuted diagonal.
            # Steps 1, 2 above.
            permuted_diag = batch_gather(matrix_diag, perm[..., m:])
            maxi = tf.argmax(permuted_diag, axis=-1,
                             output_type=tf.int64)[..., tf.newaxis]
            maxval = batch_gather(permuted_diag, maxi)
            maxi = maxi + m
            maxval = maxval[..., 0]
            # Update perm: Swap perm[...,m] with perm[...,maxi]. Step 3 above.
            perm = _swap_m_with_i(perm, m, maxi)
            # Step 4.
            row = batch_gather(matrix, perm[..., m:m + 1], axis=-2)
            row = batch_gather(row, perm[..., m + 1:])
            # Step 5.
            prev_rows = pchol[..., :m, :]
            prev_rows_perm_m_onward = batch_gather(prev_rows, perm[...,
                                                                   m + 1:])
            prev_rows_pivot_col = batch_gather(prev_rows, perm[..., m:m + 1])
            row -= tf.reduce_sum(prev_rows_perm_m_onward * prev_rows_pivot_col,
                                 axis=-2)[..., tf.newaxis, :]
            # Step 6.
            pivot = tf.sqrt(maxval)[..., tf.newaxis, tf.newaxis]
            # Step 7.
            row = tf.concat([pivot, row / pivot], axis=-1)
            # TODO(b/130899118): Pad grad fails with int64 paddings.
            # Step 8.
            paddings = tf.concat([
                tf.zeros([prefer_static.rank(pchol) - 1, 2], dtype=tf.int32),
                [[tf.cast(m, tf.int32), 0]]
            ],
                                 axis=0)
            diag_update = tf.pad(row**2, paddings=paddings)[..., 0, :]
            reverse_perm = _invert_permutation(perm)
            matrix_diag -= batch_gather(diag_update, reverse_perm)
            # Step 9.
            row = tf.pad(row, paddings=paddings)
            # TODO(bjp): Defer the reverse permutation all-at-once at the end?
            row = batch_gather(row, reverse_perm)
            pchol_shape = pchol.shape
            pchol = tf.concat([pchol[..., :m, :], row, pchol[..., m + 1:, :]],
                              axis=-2)
            tensorshape_util.set_shape(pchol, pchol_shape)
            return m + 1, pchol, perm, matrix_diag

        m = np.int64(0)
        pchol = tf.zeros_like(matrix[..., :max_rank, :])
        matrix_shape = prefer_static.shape(matrix, out_type=tf.int64)
        perm = tf.broadcast_to(prefer_static.range(matrix_shape[-1]),
                               matrix_shape[:-1])
        _, pchol, _, _ = tf.while_loop(cond=cond,
                                       body=body,
                                       loop_vars=(m, pchol, perm, matrix_diag))
        pchol = tf.linalg.matrix_transpose(pchol)
        tensorshape_util.set_shape(
            pchol, tensorshape_util.concatenate(matrix_diag.shape, [None]))
        return pchol
コード例 #7
0
ファイル: generic.py プロジェクト: HackerShohag/SuggestBot-bn
def reduce_weighted_logsumexp(logx,
                              w=None,
                              axis=None,
                              keep_dims=False,
                              return_sign=False,
                              name=None):
    """Computes `log(abs(sum(weight * exp(elements across tensor dimensions))))`.

  If all weights `w` are known to be positive, it is more efficient to directly
  use `reduce_logsumexp`, i.e., `tf.reduce_logsumexp(logx + tf.log(w))` is more
  efficient than `du.reduce_weighted_logsumexp(logx, w)`.

  Reduces `input_tensor` along the dimensions given in `axis`.
  Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
  entry in `axis`. If `keep_dims` is true, the reduced dimensions
  are retained with length 1.

  If `axis` has no entries, all dimensions are reduced, and a
  tensor with a single element is returned.

  This function is more numerically stable than log(sum(w * exp(input))). It
  avoids overflows caused by taking the exp of large inputs and underflows
  caused by taking the log of small inputs.

  For example:

  ```python
  x = tf.constant([[0., 0, 0],
                   [0, 0, 0]])

  w = tf.constant([[-1., 1, 1],
                   [1, 1, 1]])

  du.reduce_weighted_logsumexp(x, w)
  # ==> log(-1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1) = log(4)

  du.reduce_weighted_logsumexp(x, w, axis=0)
  # ==> [log(-1+1), log(1+1), log(1+1)]

  du.reduce_weighted_logsumexp(x, w, axis=1)
  # ==> [log(-1+1+1), log(1+1+1)]

  du.reduce_weighted_logsumexp(x, w, axis=1, keep_dims=True)
  # ==> [[log(-1+1+1)], [log(1+1+1)]]

  du.reduce_weighted_logsumexp(x, w, axis=[0, 1])
  # ==> log(-1+5)
  ```

  Args:
    logx: The tensor to reduce. Should have numeric type.
    w: The weight tensor. Should have numeric type identical to `logx`.
    axis: The dimensions to reduce. If `None` (the default), reduces all
      dimensions. Must be in the range `[-rank(input_tensor),
      rank(input_tensor))`.
    keep_dims: If true, retains reduced dimensions with length 1.
    return_sign: If `True`, returns the sign of the result.
    name: A name for the operation (optional).

  Returns:
    lswe: The `log(abs(sum(weight * exp(x))))` reduced tensor.
    sign: (Optional) The sign of `sum(weight * exp(x))`.
  """
    with tf.name_scope(name or 'reduce_weighted_logsumexp'):
        logx = tf.convert_to_tensor(logx, name='logx')
        if w is None:
            lswe = tf.reduce_logsumexp(logx, axis=axis, keepdims=keep_dims)
            if return_sign:
                sgn = tf.ones_like(lswe)
                return lswe, sgn
            return lswe
        w = tf.convert_to_tensor(w, dtype=logx.dtype, name='w')
        log_absw_x = logx + tf.math.log(tf.abs(w))
        max_log_absw_x = tf.reduce_max(log_absw_x, axis=axis, keepdims=True)
        # If the largest element is `-inf` or `inf` then we don't bother subtracting
        # off the max. We do this because otherwise we'd get `inf - inf = NaN`. That
        # this is ok follows from the fact that we're actually free to subtract any
        # value we like, so long as we add it back after taking the `log(sum(...))`.
        max_log_absw_x = tf.where(tf.math.is_inf(max_log_absw_x),
                                  tf.zeros([], max_log_absw_x.dtype),
                                  max_log_absw_x)
        wx_over_max_absw_x = (tf.sign(w) * tf.exp(log_absw_x - max_log_absw_x))
        sum_wx_over_max_absw_x = tf.reduce_sum(wx_over_max_absw_x,
                                               axis=axis,
                                               keepdims=keep_dims)
        if not keep_dims:
            max_log_absw_x = tf.squeeze(max_log_absw_x, axis)
        sgn = tf.sign(sum_wx_over_max_absw_x)
        lswe = max_log_absw_x + tf.math.log(sgn * sum_wx_over_max_absw_x)
        if return_sign:
            return lswe, sgn
        return lswe