def test_correct_padding(self): """Test the variable sized circuits are properly padded.""" symbol_names = [] batch_size = 2 n_qubits = 5 qubits1 = cirq.GridQubit.rect(1, n_qubits) qubits2 = cirq.GridQubit.rect(1, n_qubits + 1) circuit_batch1, resolver_batch1 = \ util.random_circuit_resolver_batch( qubits1, batch_size, include_channels=True) circuit_batch2, resolver_batch2 = \ util.random_circuit_resolver_batch( qubits2, batch_size, include_channels=True) p1 = [[resolver[symbol] for symbol in symbol_names] for resolver in resolver_batch1] p2 = [[resolver[symbol] for symbol in symbol_names] for resolver in resolver_batch2] symbol_values_array = np.array(p1 + p2) n_samples = 10 op_samples = noisy_samples_op.samples( util.convert_to_tensor(circuit_batch1 + circuit_batch2), symbol_names, symbol_values_array, [n_samples]).to_list() a_reps = np.asarray(op_samples[:2]) b_reps = np.asarray(op_samples[2:]) self.assertEqual(a_reps.shape, (2, 10, 5)) self.assertEqual(b_reps.shape, (2, 10, 6))
def test_single_channel(self, channel): """Individually test adding just a single channel type to circuits.""" symbol_names = [] batch_size = 3 n_qubits = 5 qubits = cirq.GridQubit.rect(1, n_qubits) circuit_batch, resolver_batch = \ util.random_circuit_resolver_batch( qubits, batch_size, include_channels=False) for i in range(batch_size): circuit_batch[i] = circuit_batch[i] + channel.on_each(*qubits) symbol_values_array = np.array( [[resolver[symbol] for symbol in symbol_names] for resolver in resolver_batch]) n_samples = (2**n_qubits) * 1000 op_samples = noisy_samples_op.samples( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array, [n_samples]).to_list() op_hists = self._compute_hists(op_samples, n_qubits) cirq_samples = batch_util.batch_sample(circuit_batch, resolver_batch, n_samples, cirq.DensityMatrixSimulator()) cirq_hists = self._compute_hists(cirq_samples, n_qubits) for a, b in zip(op_hists, cirq_hists): self.assertLess(stats.entropy(a + 1e-8, b + 1e-8), 0.15)
def test_simulate_consistency(self, batch_size, n_qubits, noisy): """Test consistency with batch_util.py simulation.""" symbol_names = ['alpha', 'beta'] qubits = cirq.GridQubit.rect(1, n_qubits) circuit_batch, resolver_batch = \ util.random_symbol_circuit_resolver_batch( qubits, symbol_names, batch_size, include_channels=noisy) symbol_values_array = np.array( [[resolver[symbol] for symbol in symbol_names] for resolver in resolver_batch]) n_samples = 10000 op_samples = noisy_samples_op.samples( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array, [n_samples]).to_list() op_hists = self._compute_hists(op_samples, n_qubits) cirq_samples = batch_util.batch_sample( circuit_batch, resolver_batch, n_samples, cirq.DensityMatrixSimulator() if noisy else cirq.Simulator()) cirq_hists = self._compute_hists(cirq_samples, n_qubits) tol = 1.5 if noisy else 1.0 for a, b in zip(op_hists, cirq_hists): self.assertLess(stats.entropy(a + 1e-8, b + 1e-8), tol)
def test_correctness_no_circuit(self): """Test the correctness with the empty tensor.""" empty_circuit = tf.raw_ops.Empty(shape=(0,), dtype=tf.string) empty_symbols = tf.raw_ops.Empty(shape=(0,), dtype=tf.string) empty_values = tf.raw_ops.Empty(shape=(0, 0), dtype=tf.float32) empty_n_samples = tf.convert_to_tensor([1], dtype=tf.int32) out = noisy_samples_op.samples(empty_circuit, empty_symbols, empty_values, empty_n_samples) self.assertShapeEqual(np.zeros((0, 0, 0)), out.to_tensor())
def test_correctness_empty(self): """Test the expectation for empty circuits.""" empty_circuit = util.convert_to_tensor([cirq.Circuit()]) empty_symbols = tf.convert_to_tensor([], dtype=tf.dtypes.string) empty_values = tf.convert_to_tensor([[]]) empty_n_samples = tf.convert_to_tensor([1], dtype=tf.int32) out = noisy_samples_op.samples(empty_circuit, empty_symbols, empty_values, empty_n_samples) expected = np.array([[[]]], dtype=np.int8) self.assertAllClose(out.to_tensor(), expected)
def test_simulate_samples_inputs(self): """Make sure the sample op fails gracefully on bad inputs.""" n_qubits = 5 batch_size = 5 num_samples = 10 symbol_names = ['alpha'] qubits = cirq.GridQubit.rect(1, n_qubits) circuit_batch, resolver_batch = \ util.random_symbol_circuit_resolver_batch( qubits, symbol_names, batch_size) symbol_values_array = np.array( [[resolver[symbol] for symbol in symbol_names] for resolver in resolver_batch]) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'rank 1. Got rank 2'): # programs tensor has the wrong shape. noisy_samples_op.samples(util.convert_to_tensor([circuit_batch]), symbol_names, symbol_values_array, [num_samples]) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'rank 1. Got rank 2'): # symbol_names tensor has the wrong shape. noisy_samples_op.samples(util.convert_to_tensor(circuit_batch), np.array([symbol_names]), symbol_values_array, [num_samples]) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'rank 2. Got rank 3'): # symbol_values tensor has the wrong shape. noisy_samples_op.samples(util.convert_to_tensor(circuit_batch), symbol_names, np.array([symbol_values_array]), [num_samples]) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'rank 2. Got rank 1'): # symbol_values tensor has the wrong shape 2. noisy_samples_op.samples(util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array[0], [num_samples]) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'rank 1. Got rank 2'): # num_samples tensor has the wrong shape. noisy_samples_op.samples(util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array, [[num_samples]]) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'Unparseable proto'): # programs tensor has the right type, but invalid value. noisy_samples_op.samples(['junk'] * batch_size, symbol_names, symbol_values_array, [num_samples]) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'Could not find symbol in parameter map'): # symbol_names tensor has the right type, but invalid value. noisy_samples_op.samples(util.convert_to_tensor(circuit_batch), ['junk'], symbol_values_array, [num_samples]) with self.assertRaisesRegex(TypeError, 'Cannot convert'): # programs tensor has the wrong type. noisy_samples_op.samples([1] * batch_size, symbol_names, symbol_values_array, [num_samples]) with self.assertRaisesRegex(TypeError, 'Cannot convert'): # programs tensor has the wrong type. noisy_samples_op.samples(util.convert_to_tensor(circuit_batch), [1], symbol_values_array, [num_samples]) with self.assertRaisesRegex(tf.errors.UnimplementedError, 'Cast string to float is not supported'): # programs tensor has the wrong type. noisy_samples_op.samples(util.convert_to_tensor(circuit_batch), symbol_names, [['junk']] * batch_size, [num_samples]) with self.assertRaisesRegex(Exception, 'junk'): # num_samples tensor has the wrong type. noisy_samples_op.samples(util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array, ['junk']) with self.assertRaisesRegex(TypeError, 'missing'): # too few tensors. # pylint: disable=no-value-for-parameter noisy_samples_op.samples(util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array) # pylint: enable=no-value-for-parameter with self.assertRaisesRegex(tf.errors.InvalidArgumentError, expected_regex='do not match'): # wrong symbol_values size. noisy_samples_op.samples( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array[:int(batch_size * 0.5)], num_samples)