コード例 #1
0
    def test_merge_loss(self):
        """Tests for merging losses from multi-head and regularization loss."""
        with tf.Graph().as_default():
            head1 = ranking_head.create_ranking_head(loss_fn=_make_loss_fn(),
                                                     name='head1')
            head2 = ranking_head.create_ranking_head(loss_fn=_make_loss_fn(),
                                                     name='head2')
            multi_head = ranking_head.create_multi_ranking_head([head1, head2],
                                                                [1.0, 2.0])
            logits = {
                'head1': tf.convert_to_tensor(value=[[1., 3.], [1., 2.]]),
                'head2': tf.convert_to_tensor(value=[[2., 3.], [2., 2.]]),
            }
            labels = {
                'head1': tf.convert_to_tensor(value=[[0., 1.], [0., 2.]]),
                'head2': tf.convert_to_tensor(value=[[0., 1.], [0., 2.]]),
            }
            regularization_losses = [1.5, 0.5]
            expected_loss = 1. * 4. + 2. * 6. + 1.5 + 0.5

            # Create loss.
            training_loss = multi_head._merge_loss(
                features={},
                mode=tf.estimator.ModeKeys.TRAIN,
                logits=logits,
                labels=labels,
                regularization_losses=regularization_losses)
            with self.cached_session():
                _initialize_variables(self, tf.compat.v1.train.Scaffold())
                self.assertAllClose(training_loss.eval(), expected_loss)
コード例 #2
0
    def test_predict(self):
        with tf.Graph().as_default():
            head1 = ranking_head.create_ranking_head(loss_fn=_make_loss_fn(),
                                                     name='head1')
            head2 = ranking_head.create_ranking_head(loss_fn=_make_loss_fn(),
                                                     name='head2')
            multi_head = ranking_head.create_multi_ranking_head([head1, head2])
            logits = {
                'head1': tf.convert_to_tensor(value=[[1., 3.], [1., 2.]]),
                'head2': tf.convert_to_tensor(value=[[2., 3.], [2., 2.]]),
            }
            spec = multi_head.create_estimator_spec(
                features={}, mode=tf.estimator.ModeKeys.PREDICT, logits=logits)

            # Assert spec contains expected tensors.
            self.assertIsNone(spec.loss)
            self.assertEqual({}, spec.eval_metric_ops)
            self.assertIsNone(spec.train_op)
            self.assertCountEqual([
                ranking_head._DEFAULT_SERVING_KEY, 'predict', 'head1',
                'head1/regression', 'head1/predict', 'head2',
                'head2/regression', 'head2/predict'
            ], spec.export_outputs.keys())

            # Assert predictions.
            with self.cached_session() as sess:
                _initialize_variables(self, spec.scaffold)
                self.assertIsNone(spec.scaffold.summary_op)
                predictions = sess.run(spec.predictions)
                self.assertAllClose(logits['head1'], predictions['head1'])
                self.assertAllClose(logits['head2'], predictions['head2'])
                self.assertAllClose(
                    logits['head1'],
                    sess.run(spec.export_outputs[
                        ranking_head._DEFAULT_SERVING_KEY].value))
コード例 #3
0
    def test_eval(self):
        with tf.Graph().as_default():
            metric_fns = {
                'metric/precision@1':
                metrics_lib.make_ranking_metric_fn(
                    metrics_lib.RankingMetricKey.PRECISION, topn=1),
            }
            head1 = ranking_head.create_ranking_head(
                loss_fn=_make_loss_fn(),
                eval_metric_fns=metric_fns,
                name='head1')
            head2 = ranking_head.create_ranking_head(
                loss_fn=_make_loss_fn(),
                eval_metric_fns=metric_fns,
                name='head2')
            multi_head = ranking_head.create_multi_ranking_head([head1, head2])

            logits = {
                'head1': tf.convert_to_tensor(value=[[1., 3.], [1., 2.]]),
                'head2': tf.convert_to_tensor(value=[[2., 3.], [2., 2.]]),
            }
            labels = {
                'head1': tf.convert_to_tensor(value=[[0., 1.], [0., 2.]]),
                'head2': tf.convert_to_tensor(value=[[0., 1.], [0., 2.]]),
            }
            spec = multi_head.create_estimator_spec(
                features={},
                mode=tf.estimator.ModeKeys.EVAL,
                logits=logits,
                labels=labels)

            expected_metrics = [
                'head1/labels_mean',
                'head1/logits_mean',
                'head1/metric/precision@1',
                'head2/labels_mean',
                'head2/logits_mean',
                'head2/metric/precision@1',
            ]

            # Assert spec contains expected tensors.
            self.assertIsNotNone(spec.loss)
            self.assertIsNone(spec.train_op)
            self.assertIsNone(spec.export_outputs)
            self.assertCountEqual(spec.eval_metric_ops.keys(),
                                  expected_metrics)

            # Assert predictions, loss, and metrics.
            with self.cached_session() as sess:
                _initialize_variables(self, spec.scaffold)
                self.assertIsNone(spec.scaffold.summary_op)
                update_ops = {
                    k: spec.eval_metric_ops[k][1]
                    for k in spec.eval_metric_ops
                }
                loss, metrics = sess.run((spec.loss, update_ops))
                self.assertAllClose(loss, 10.)
                self.assertItemsEqual(metrics.keys(), expected_metrics)
コード例 #4
0
ファイル: head_test.py プロジェクト: we1559/ranking
    def test_train_with_regularization_losses(self):
        regularization_losses = [1.5, 0.5]
        expected_regularization_loss = 2.

        expected_train_result = b'my_train_op'
        expected_loss = expected_regularization_loss + self._default_loss

        def _train_op_fn(loss):
            with tf.control_dependencies(
                (tf.compat.v1.assert_equal(tf.cast(expected_loss,
                                                   dtype=tf.float32),
                                           tf.cast(loss, dtype=tf.float32),
                                           name='assert_loss'), )):
                return tf.constant(expected_train_result)

        head = ranking_head.create_ranking_head(loss_fn=_make_loss_fn(),
                                                train_op_fn=_train_op_fn)

        # Create estimator spec.
        spec = head.create_estimator_spec(
            features=self._default_features_dict,
            mode=tf.estimator.ModeKeys.TRAIN,
            logits=self._default_logits,
            labels=self._default_labels,
            regularization_losses=regularization_losses)

        # Assert predictions, loss, and train_op.
        with self.cached_session() as sess:
            _initialize_variables(self, spec.scaffold)
            loss, train_result = sess.run((spec.loss, spec.train_op))
            self.assertAllClose(expected_loss, loss)
            self.assertEqual(expected_train_result, train_result)
コード例 #5
0
ファイル: head_test.py プロジェクト: we1559/ranking
    def test_train_with_optimizer(self):
        expected_train_result = b'my_train_op'
        expected_loss = self._default_loss

        class _Optimizer(object):
            def minimize(self, loss, global_step):
                del global_step
                with tf.control_dependencies(
                    (tf.compat.v1.assert_equal(tf.cast(expected_loss,
                                                       dtype=tf.float32),
                                               tf.cast(loss, dtype=tf.float32),
                                               name='assert_loss'), )):
                    return tf.constant(expected_train_result)

        head = ranking_head.create_ranking_head(loss_fn=_make_loss_fn(),
                                                optimizer=_Optimizer())

        # Create estimator spec.
        spec = head.create_estimator_spec(features=self._default_features_dict,
                                          mode=tf.estimator.ModeKeys.TRAIN,
                                          logits=self._default_logits,
                                          labels=self._default_labels)

        with self.cached_session() as sess:
            _initialize_variables(self, spec.scaffold)
            loss, train_result = sess.run((spec.loss, spec.train_op))
            self.assertAllClose(expected_loss, loss)
            self.assertEqual(expected_train_result, train_result)
コード例 #6
0
ファイル: head_test.py プロジェクト: we1559/ranking
    def test_train(self):
        expected_train_result = b'my_train_op'

        def _train_op_fn(loss):
            with tf.control_dependencies(
                (tf.compat.v1.assert_near(tf.cast(self._default_loss,
                                                  dtype=tf.float32),
                                          tf.cast(loss, dtype=tf.float32),
                                          name='assert_loss'), )):
                return tf.constant(expected_train_result)

        head = ranking_head.create_ranking_head(loss_fn=_make_loss_fn(),
                                                train_op_fn=_train_op_fn)
        # Create estimator spec.
        spec = head.create_estimator_spec(features=self._default_features_dict,
                                          mode=tf.estimator.ModeKeys.TRAIN,
                                          logits=self._default_logits,
                                          labels=self._default_labels)

        # Assert spec contains expected tensors.
        self.assertIsNotNone(spec.loss)
        self.assertEqual({}, spec.eval_metric_ops)
        self.assertIsNotNone(spec.train_op)
        self.assertIsNone(spec.export_outputs)

        # Assert predictions, loss, and train_op.
        with self.cached_session() as sess:
            _initialize_variables(self, spec.scaffold)
            loss, train_result = sess.run((spec.loss, spec.train_op))
            self.assertAllClose(self._default_loss, loss)
            self.assertEqual(expected_train_result, train_result)
コード例 #7
0
  def _model_fn(self):
    """Returns a model_fn."""

    def _train_op_fn(loss):
      """Defines train op used in ranking head."""
      update_ops = tf.compat.v1.get_collection(
          tf.compat.v1.GraphKeys.UPDATE_OPS)
      minimize_op = self._optimizer.minimize(
          loss=loss, global_step=tf.compat.v1.train.get_global_step())
      train_op = tf.group([update_ops, minimize_op])
      return train_op

    ranking_head = head.create_ranking_head(
        loss_fn=losses.make_loss_fn(
            self._hparams.get("loss"),
            weights_feature_name=self._hparams.get(_LOSS_WEIGHT),
            reduction=self._loss_reduction),
        eval_metric_fns=self._eval_metric_fns(),
        train_op_fn=_train_op_fn)

    return model.make_groupwise_ranking_fn(
        group_score_fn=self._group_score_fn,
        group_size=1,
        transform_fn=self._transform_fn,
        ranking_head=ranking_head)
コード例 #8
0
    def test_predict(self):
        with tf.Graph().as_default():
            head = ranking_head.create_ranking_head(loss_fn=_make_loss_fn())
            logits = [[1., 3.], [1., 2.]]
            spec = head.create_estimator_spec(
                features={}, mode=tf.estimator.ModeKeys.PREDICT, logits=logits)

            # Assert spec contains expected tensors.
            self.assertIsNone(spec.loss)
            self.assertEqual({}, spec.eval_metric_ops)
            self.assertIsNone(spec.train_op)
            self.assertItemsEqual(
                (ranking_head._DEFAULT_SERVING_KEY, 'regression', 'predict'),
                spec.export_outputs.keys())

            # Assert predictions.
            with self.cached_session() as sess:
                _initialize_variables(self, spec.scaffold)
                self.assertIsNone(spec.scaffold.summary_op)
                predictions = sess.run(spec.predictions)
                self.assertAllClose(logits, predictions)
                self.assertAllClose(
                    logits,
                    sess.run(spec.export_outputs[
                        ranking_head._DEFAULT_SERVING_KEY].value))
コード例 #9
0
ファイル: head_test.py プロジェクト: we1559/ranking
    def test_multi_dim_weighted_eval(self):
        weights_feature_name = self._default_weights_feature_name
        metric_fns = {
            'metric/precision@1':
            metrics_lib.make_ranking_metric_fn(
                metrics_lib.RankingMetricKey.PRECISION, topn=1),
        }
        head = ranking_head.create_ranking_head(
            loss_fn=_make_loss_fn(weights_feature_name),
            eval_metric_fns=metric_fns)

        weights = self._default_weights

        # Create estimator spec.
        spec = head.create_estimator_spec(
            features={weights_feature_name: weights},
            mode=tf.estimator.ModeKeys.EVAL,
            logits=self._default_logits,
            labels=self._default_labels)

        expected_metrics = [
            'labels_mean',
            'logits_mean',
            'metric/precision@1',
        ]

        with self.cached_session() as sess:
            _initialize_variables(self, spec.scaffold)
            update_ops = {
                k: spec.eval_metric_ops[k][1]
                for k in spec.eval_metric_ops
            }
            loss, metrics = sess.run((spec.loss, update_ops))
            self.assertAllClose(self._default_weighted_loss, loss)
            self.assertItemsEqual(expected_metrics, metrics.keys())
コード例 #10
0
    def test_train(self):
        with tf.Graph().as_default():
            expected_train_result = b'my_train_op'

            def _train_op_fn(loss):
                with tf.control_dependencies(
                    (tf.compat.v1.assert_near(tf.cast(loss, dtype=tf.float32),
                                              16.,
                                              name='assert_loss'), )):
                    return tf.constant(expected_train_result)

            head1 = ranking_head.create_ranking_head(loss_fn=_make_loss_fn(),
                                                     train_op_fn=_train_op_fn,
                                                     name='head1')
            head2 = ranking_head.create_ranking_head(loss_fn=_make_loss_fn(),
                                                     train_op_fn=_train_op_fn,
                                                     name='head2')
            multi_head = ranking_head.create_multi_ranking_head([head1, head2],
                                                                [1.0, 2.0])

            logits = {
                'head1': tf.convert_to_tensor(value=[[1., 3.], [1., 2.]]),
                'head2': tf.convert_to_tensor(value=[[2., 3.], [2., 2.]]),
            }
            labels = {
                'head1': tf.convert_to_tensor(value=[[0., 1.], [0., 2.]]),
                'head2': tf.convert_to_tensor(value=[[0., 1.], [0., 2.]]),
            }
            # Create estimator spec.
            spec = multi_head.create_estimator_spec(
                features={},
                mode=tf.estimator.ModeKeys.TRAIN,
                logits=logits,
                labels=labels)

            # Assert spec contains expected tensors.
            self.assertIsNotNone(spec.loss)
            self.assertEqual(spec.eval_metric_ops, {})
            self.assertIsNotNone(spec.train_op)
            self.assertIsNone(spec.export_outputs)

            # Assert predictions, loss, and train_op.
            with self.cached_session() as sess:
                _initialize_variables(self, spec.scaffold)
                loss, train_result = sess.run((spec.loss, spec.train_op))
                self.assertAllClose(loss, 16.)
                self.assertEqual(expected_train_result, train_result)
コード例 #11
0
ファイル: head_test.py プロジェクト: we1559/ranking
 def test_train_create_loss(self):
     head = ranking_head.create_ranking_head(loss_fn=_make_loss_fn())
     # Create loss.
     training_loss = head.create_loss(features=self._default_features_dict,
                                      mode=tf.estimator.ModeKeys.TRAIN,
                                      logits=self._default_logits,
                                      labels=self._default_labels)[0]
     with self.cached_session():
         _initialize_variables(self, tf.compat.v1.train.Scaffold())
         self.assertAllClose(self._default_loss, training_loss.eval())
コード例 #12
0
 def test_labels_and_logits_metrics(self):
   head = ranking_head.create_ranking_head(loss_fn=_make_loss_fn())
   with tf.Graph().as_default():
     logits = [[1., 3., 2.], [1., 2., 3.]]
     labels = [[0., 0., 1.], [0., 0., 2.]]
     metrics_dict = head._labels_and_logits_metrics(labels, logits)
     self.assertCountEqual(['labels_mean', 'logits_mean'], metrics_dict)
     with self.cached_session() as sess:
       sess.run(tf.compat.v1.local_variables_initializer())
       for (metric_op,
            update_op), value in [(metrics_dict['labels_mean'], 0.5),
                                  (metrics_dict['logits_mean'], 2.0)]:
         sess.run(update_op)
         self.assertAlmostEqual(sess.run(metric_op), value, places=5)
コード例 #13
0
 def setUp(self):
   super(GroupwiseRankingEstimatorTest, self).setUp()
   ops.reset_default_graph()
   self._model_dir = test.get_temp_dir()
   gfile.MakeDirs(self._model_dir)
   model_fn = model.make_groupwise_ranking_fn(
       _group_score_fn,
       group_size=2,
       transform_fn=feature.make_identity_transform_fn(['context', 'weight']),
       ranking_head=head.create_ranking_head(
           loss_fn=losses.make_loss_fn(
               losses.RankingLossKey.PAIRWISE_HINGE_LOSS,
               weights_feature_name='weight'),
           optimizer=training.AdagradOptimizer(learning_rate=0.1)))
   self._estimator = estimator.Estimator(model_fn, self._model_dir)
コード例 #14
0
    def test_eval(self):
        with tf.Graph().as_default():
            metric_fns = {
                'metric/precision@1':
                metrics_lib.make_ranking_metric_fn(
                    metrics_lib.RankingMetricKey.PRECISION, topn=1),
            }
            head = ranking_head.create_ranking_head(loss_fn=_make_loss_fn(),
                                                    eval_metric_fns=metric_fns)

            # Create estimator spec.
            spec = head.create_estimator_spec(
                features=self._default_features_dict,
                mode=tf.estimator.ModeKeys.EVAL,
                logits=self._default_logits,
                labels=self._default_labels)

            expected_metrics = [
                'labels_mean',
                'logits_mean',
                'metric/precision@1',
            ]

            # Assert spec contains expected tensors.
            self.assertIsNotNone(spec.loss)
            self.assertIsNone(spec.train_op)
            self.assertIsNone(spec.export_outputs)
            self.assertItemsEqual(expected_metrics,
                                  spec.eval_metric_ops.keys())

            # Assert predictions, loss, and metrics.
            with self.cached_session() as sess:
                _initialize_variables(self, spec.scaffold)
                self.assertIsNone(spec.scaffold.summary_op)
                update_ops = {
                    k: spec.eval_metric_ops[k][1]
                    for k in spec.eval_metric_ops
                }
                loss, metrics = sess.run((spec.loss, update_ops))
                self.assertAllClose(self._default_loss, loss)
                self.assertItemsEqual(expected_metrics, metrics.keys())
コード例 #15
0
ファイル: head_test.py プロジェクト: we1559/ranking
    def test_multi_dim_weighted_train(self):
        weights_feature_name = self._default_weights_feature_name

        def _train_op_fn(loss):
            return loss

        head = ranking_head.create_ranking_head(
            loss_fn=_make_loss_fn(weights_feature_name),
            train_op_fn=_train_op_fn)
        # Create estimator spec.
        spec = head.create_estimator_spec(
            features={weights_feature_name: self._default_weights},
            mode=tf.estimator.ModeKeys.TRAIN,
            logits=self._default_logits,
            labels=self._default_labels)

        # Assert predictions, loss, and train_op.
        with self.cached_session() as sess:
            _initialize_variables(self, spec.scaffold)
            loss, train_result = sess.run((spec.loss, spec.train_op))
            self.assertAllClose(self._default_weighted_loss, loss)
            self.assertAllClose(self._default_weighted_loss, train_result)
コード例 #16
0
ファイル: head_test.py プロジェクト: zwcdp/ranking
    def test_predict(self):
        head = ranking_head.create_ranking_head(loss_fn=_make_loss_fn())
        logits = [[1., 3.], [1., 2.]]
        spec = head.create_estimator_spec(features=self._default_features_dict,
                                          mode=model_fn.ModeKeys.PREDICT,
                                          logits=logits)

        # Assert spec contains expected tensors.
        self.assertIsNone(spec.loss)
        self.assertEqual({}, spec.eval_metric_ops)
        self.assertIsNone(spec.train_op)
        self.assertItemsEqual((self._default_signature, ),
                              spec.export_outputs.keys())

        # Assert predictions.
        with self.cached_session() as sess:
            _initialize_variables(self, spec.scaffold)
            self.assertIsNone(spec.scaffold.summary_op)
            predictions = sess.run(spec.predictions)
            self.assertAllClose(logits, predictions)
            self.assertAllClose(
                logits,
                sess.run(spec.export_outputs[self._default_signature].value))
コード例 #17
0
ファイル: head_test.py プロジェクト: we1559/ranking
    def test_name(self):
        head = ranking_head.create_ranking_head(loss_fn=_make_loss_fn(),
                                                name='fake_head')

        self.assertEqual('fake_head', head.name)