コード例 #1
0
def format_grpc_request(model_name, model_version, model_signatures,
                        signature_name, inputs_to_predict):
    """ Formats a given GRPC request (for sending to TF-serving model server)

    :param model_name: (str) name of model in TF-serving model server that you want to predict with
    :param model_version: (int) version of model in TF-serving model server that you want to predict with
    :param model_signatures: (dict)
    :param signature_name: (dict)
    :param inputs_to_predict: (list(dict(object))) list of inputs (where each input is a dict mapping from input name
                                                    to input object, named according to the model_spec)
    :return: GRPC request object
    """

    try:
        tf_request = PredictRequest()
        tf_request.model_spec.name = model_name
        tf_request.model_spec.version.value = int(model_version)
        tf_request.model_spec.signature_name = signature_name
        model_spec_inputs = model_signatures[signature_name]["input"]

        grpc_inputs = {k: [] for k in model_spec_inputs.keys()}
        for model_input in inputs_to_predict:
            for k in model_spec_inputs.keys():
                grpc_inputs[k].append(model_input[k])

        for k, v in model_spec_inputs.items():
            tf_input = np.array(grpc_inputs[k])
            assert tf_input.shape[1:] == tuple(
                v['shape'][1:])  # make sure inputs dim == model_spec
            tensor_proto = make_tensor_proto(tf_input, shape=tf_input.shape)
            tf_request.inputs[k].CopyFrom(tensor_proto)
        return tf_request
    except Exception as e:
        print(e)
        return False
コード例 #2
0
ファイル: client.py プロジェクト: ericwang915/onnx-serving
def predict(url, model, tensor):
    '''    
    '''
    host, port = url.split(':')
    stub = _create_prediction_service_stub(host, port)

    # str -> np array
    np_array = np.array(eval(tensor))
    # -> tf tensor
    request_tensor = make_tensor_proto(np_array)

    # make a call
    request = PredictRequest(
        model_spec=ModelSpec(name=model),
        inputs={
            'input': request_tensor
        }
    )
    response = stub.Predict(request)

    # print results
    click.echo('results')
    for key, val_tf_tensor in response.outputs.items():        
        nd_array = make_np_array(val_tf_tensor)        
        click.echo(' {}: {}'.format(key, nd_array))
コード例 #3
0
    def predict(self, idImage: str) -> dict:
        """[Open GRPC serve for TF ]

            Args:
                idImage (str): [id of image input]

            Returns:
                [dictionary]: [return formated dictionary ready to be sent as a JSON]
            """
        #call pre_process
        input_tensor = self.pre_process(idImage)
        max = 256 * 128 * 128 * 10 * 10  #Max data sent by grpc
        channel = grpc.insecure_channel(
            settings.TENSORFLOW_SERVING_ADDRESS + ':' +
            settings.TENSORFLOW_SERVING_PORT,
            options=[('grpc.max_message_length', max),
                     ('grpc.max_send_message_length', max),
                     ('grpc.max_receive_message_length', max)])
        version = Int64Value(value=1)  # version hardcodee
        model_spec = ModelSpec(version=version,
                               name=self.get_model_name(),
                               signature_name='serving_default')
        grpc_request = PredictRequest(model_spec=model_spec)
        grpc_request.inputs[self.get_input_name()].CopyFrom(input_tensor)
        stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
        result = stub.Predict(grpc_request, 10)
        # call post_process
        formated_result = self.post_process(result)
        return formated_result
コード例 #4
0
    def _make_request(self, request: Request) -> PredictRequest:
        pred_request = PredictRequest()
        pred_request.model_spec.name = self.model_name
        pred_request.model_spec.signature_name = self.signature_name

        for k, v in request.query.items():
            request.inputs[k].CopyFrom(tf.make_tensor_proto(v))

        return pred_request
コード例 #5
0
def main(words, words_len):
    request = PredictRequest()
    request.model_spec.name = "estimator_ner"
    request.model_spec.signature_name = "serving_default"
    request.inputs["words"].CopyFrom(tf.make_tensor_proto(words))
    request.inputs["words_len"].CopyFrom(tf.make_tensor_proto(words_len))

    feature = stub.Predict(request, 5.0)
    return feature
コード例 #6
0
    def make_request(self, input_batch) -> PredictRequest:
        input_batch = np.stack(input_batch)
        request = PredictRequest()
        request.model_spec.name = self.model_info.architecture
        request.model_spec.signature_name = self.signature_name
        for input_ in self.model_info.inputs:
            tensor_proto = tf.make_tensor_proto(input_batch, shape=input_batch.shape)
            request.inputs[input_.name].CopyFrom(tensor_proto)

        return request
コード例 #7
0
def create_request(num, images):
    images = np.asarray(images).astype(np.float32).flatten()
    image_proto = tf.make_tensor_proto(values=images,
                                       shape=[num, 28, 28, 1],
                                       dtype=tf.float32)
    request = PredictRequest()
    request.model_spec.name = 'doodle'
    request.model_spec.signature_name = 'serving_default'
    request.inputs['image'].CopyFrom(image_proto)
    return request
コード例 #8
0
    def __init__(self, model_name="VehicleDetector", min_confidence=0.8):
        self.min_confidence = min_confidence

        self.request = PredictRequest()
        self.request.model_spec.name = model_name
        self.request.model_spec.signature_name = "serving_default"
        self.channel = grpc.insecure_channel('localhost:8500')
        self.predict_service = prediction_service_pb2_grpc.PredictionServiceStub(self.channel)

        self.sub_start_x = None
コード例 #9
0
 def prepare_request(self, input_data):
     request = PredictRequest()
     request.model_spec.name = self.name
     request.model_spec.signature_name = self.signature_name
     request.inputs[self.input_name].CopyFrom(
         tf.make_tensor_proto(
             tf.convert_to_tensor(
                 input_data,
                 dtype = tf.string
             )
         )
     )
     return request
コード例 #10
0
    def predict(self, request_data, request_timeout=10):

        self.logger.info('Sending request to tfserving model')
        self.logger.info('Host: {}'.format(self.host))
        self.logger.info('Model name: {}'.format(self.model_name))
        self.logger.info('Model version: {}'.format(self.model_version))

        # Create gRPC client and request
        t = time.time()
        channel = grpc.insecure_channel(self.host)
        self.logger.debug(
            'Establishing insecure channel took: {}'.format(time.time() - t))

        t = time.time()
        stub = PredictionServiceStub(channel)
        self.logger.debug('Creating stub took: {}'.format(time.time() - t))

        t = time.time()
        request = PredictRequest()
        self.logger.debug(
            'Creating request object took: {}'.format(time.time() - t))

        request.model_spec.name = self.model_name
        request.model_spec.signature_name = 'predict_images'

        if self.model_version > 0:
            request.model_spec.version.value = self.model_version

        request.inputs['images'].CopyFrom(
            tf.contrib.util.make_tensor_proto(request_data,
                                              shape=[1, request_data.size]))

        try:
            t = time.time()
            predict_response = stub.Predict(request, timeout=request_timeout)

            self.logger.debug(
                'Actual request took: {} seconds'.format(time.time() - t))

            predict_response_dict = predict_response_to_dict(predict_response)

            keys = [k for k in predict_response_dict]
            self.logger.info('Got predict_response with keys: {}'.format(keys))

            return predict_response_dict

        except RpcError as e:
            self.logger.error(e)
            self.logger.error('Prediction failed!')

        return {}
コード例 #11
0
def doTest(host, port):
    from tensorflow_serving.apis.predict_pb2 import PredictRequest
    from tensorflow_serving.apis.prediction_service_pb2_grpc import PredictionServiceStub
    from grpc import insecure_channel, StatusCode
    from tensorflow.contrib.util import make_tensor_proto, make_ndarray
    from tensorflow import float32

    target = "%s:%s"%(host, port)

    print "Sending prediction request to", target, "\n"

    channel = insecure_channel(target)
    stub = PredictionServiceStub(channel)

    request = PredictRequest()
    request.model_spec.name = "campaign"
    request.model_spec.signature_name = ""

    request.inputs["hour"].CopyFrom(make_tensor_proto(6, shape=[1], dtype=float32))
    request.inputs["week"].CopyFrom(make_tensor_proto(5, shape=[1], dtype=float32))
    request.inputs["sid"].CopyFrom(make_tensor_proto("47320", shape=[1]))
    request.inputs["sspid"].CopyFrom(make_tensor_proto("3", shape=[1]))
    request.inputs["country"].CopyFrom(make_tensor_proto("DK", shape=[1]))
    request.inputs["os"].CopyFrom(make_tensor_proto("6", shape=[1]))
    request.inputs["domain"].CopyFrom(make_tensor_proto("video9.in", shape=[1]))
    request.inputs["isp"].CopyFrom(make_tensor_proto("Tele Danmark", shape=[1]))
    request.inputs["browser"].CopyFrom(make_tensor_proto("4", shape=[1]))
    request.inputs["type"].CopyFrom(make_tensor_proto("site", shape=[1]))
    request.inputs["lat"].CopyFrom(make_tensor_proto(35000, shape=[1], dtype=float32))
    request.inputs["lon"].CopyFrom(make_tensor_proto(105000, shape=[1], dtype=float32))
    request.inputs["connectiontype"].CopyFrom(make_tensor_proto("2", shape=[1]))
    request.inputs["devicetype"].CopyFrom(make_tensor_proto("1", shape=[1]))
    request.inputs["donottrack"].CopyFrom(make_tensor_proto("0", shape=[1]))
    request.inputs["userid"].CopyFrom(make_tensor_proto("984273063", shape=[1]))
    request.inputs["ua"].CopyFrom(make_tensor_proto("Mozilla/5.0 (Linux; U; Android 5.1.1; en-US; Redmi Note 3 Build/LMY47V) AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0 UCBrowser/11.0.8.855 U3/0.8.0 Mobile Safari/534.30", shape=[1]))

    (result, status) = stub.Predict.with_call(request)

    if status.code() != StatusCode.OK:
        print "call failed", status
        return

    predictions = make_ndarray(result.outputs["classes"])

    if predictions.size == 0:
        print "no predition replied"
        return

    cidIndex = predictions[0]
    print "Server predict with index", cidIndex
コード例 #12
0
    def predict(self, request_data, request_timeout=10):
        # pylint: disable=E1101
        request = PredictRequest()
        request.model_spec.name = self.model_name
        request.model_spec.version.value = self.model_version

        for d in request_data:
            tensor_proto = make_tensor_proto(d['data'], d['in_tensor_dtype'])
            request.inputs[d['in_tensor_name']].CopyFrom(tensor_proto)

        response = self._retry_grpc(request, request_timeout)
        response_dict = grpc_response_to_dict(response)

        self.logger.info('Got PredictResponse with keys: %s.',
                         list(response_dict))

        return response_dict
コード例 #13
0
    def call(self, request: Request) -> Any:
        from micro_toolkit.data_process.text_sequence_padding import TextSequencePadding

        tsp = TextSequencePadding("<pad>")
        data = {
            "words":
            tsp.fit(request.query),
            "words_len": [
                len(list(filter(lambda x: x != 0.0, text)))
                for text in request.query
            ],
        }

        predict_request = PredictRequest()
        predict_request.inputs["words"].CopyFrom(
            tf.make_tensor_proto(data["words"], dtype=tf.string))
        predict_request.inputs["words_len"].CopyFrom(
            tf.make_tensor_proto(data["words_len"], dtype=tf.int32))
        return [predict_request], {}
コード例 #14
0
    def test_predict(self):
        """
        python -m unittest tests.sandbox_test.TestSandbox.test_predict
        """        
        _initialize_worker("localhost:8500")

        for i in range(10):
            np_array = np.random.rand(1,20)        
            request_tensor = make_tensor_proto(np_array)

            # make a call
            request = PredictRequest(
                model_spec=ModelSpec(name='gs-mp-227'),
                inputs={
                    'input': request_tensor
                }
            )
            response = _worker_stub_singleton.Predict(request)
            logger.info("+")
        assert True
コード例 #15
0
ファイル: model_client.py プロジェクト: StyriaAI/mnist_api
    def classify(self, img):
        """
        Classify given image using Model Server.

        :param img: np.ndarray, image to classify
        """
        batch = np.array([img.astype(np.float32) / 255])
        request = PredictRequest()
        tensor_proto = tf.make_tensor_proto(batch)
        request.inputs[INPUT_NAME].CopyFrom(tensor_proto)
        request.model_spec.name = self.model_name
        request.model_spec.signature_name = GRAPH_SIGNATURE_NAME

        response = self.stub.Predict(request, self.timeout)

        tensor_proto = response.outputs[OUTPUT_NAME]
        classes = tensor_util.MakeNdarray(tensor_proto)

        assert classes.shape == (1, )
        return int(classes[0])
コード例 #16
0
    def get_prediction(
        self,
        model_name: str,
        model_version: int,
        inputs: np.ndarray,
        input_layer_name: str,
        output_layer_name: str,
        input_shape: Tuple[int],
        output_shape: Tuple[int] = None
    ) -> np.ndarray:
        """Get predictions from TensorFlow Serving server, from the specified
        model, version and input.

        Args:
            model_name (str): Model name
            model_version (int): Version of model
            inputs (np.ndarray): Input as a NumPy array, in the correct shape
                as expected by the model. This may require an extra axis for
                number of instances of the input e.g. (1, 224, 224, 3)
            input_layer_name (str): Input layer name in model
            output_layer_name (str): Output layer in model
            input_shape (Tuple[int]): Shape of the input. Depending on the
                model, an extra first axis may be required which encodes
                the number of instances of the input e.g. (1, 224, 224, 3)
            output_shape (Tuple[int]): Shape of the model output, where
                typically the first axis is the number of instances of the
                input provided.

        Returns:
            np.ndarray: Predictions from model
        """
        request = PredictRequest()
        request.model_spec.name = model_name
        request.model_spec.signature_name = "serving_default"
        request.inputs[input_layer_name].CopyFrom(
            tf.make_tensor_proto(
                inputs.astype(np.float32), shape=input_shape
            )
        )
        result = self.stub.Predict(request)
        return np.array(result.outputs[output_layer_name].float_val).reshape(output_shape)
コード例 #17
0
    def test_model_over_grpc(self):

        # feature vectors (random)
        features = np.random.rand(2, 20)
        model_name = 'test_model'

        # request
        request = PredictRequest(
            model_spec=ModelSpec(name=model_name, signature_name='predict'),
            inputs={'features': make_tensor_proto(features)})

        # call stub (run server first)
        stub = create_prediction_service_stub('localhost', 50051)
        try:
            response = stub.Predict(request)
            result_tensor = response.outputs.get('result')
            result_vector = make_np_array(result_tensor)
            print(result_vector)
        except Exception as ex:
            print(ex)

        assert result_vector.shape.__len__() == 1  # dims
        assert result_vector.__len__() == 2  # number of records
コード例 #18
0
ファイル: tensorflow_model.py プロジェクト: clustree/modelkit
    def _tensorflow_predict_grpc(self,
                                 vects: Dict[str, "np.ndarray"],
                                 dtype=None) -> Dict[str, "np.ndarray"]:
        request = PredictRequest()
        request.model_spec.name = self.tf_model_name
        for key, vect in vects.items():
            request.inputs[key].CopyFrom(
                tf.compat.v1.make_tensor_proto(vect, dtype=dtype))
        if not self.grpc_stub:
            self.grpc_stub = connect_tf_serving_grpc(
                self.tf_model_name,
                self.service_settings.tf_serving.host,
                self.service_settings.tf_serving.port,
            )

        r = self.grpc_stub.Predict(request, 1)

        return {
            output_key: np.array(
                r.outputs[output_key].ListFields()[-1][1],
                dtype=self.output_dtypes.get(output_key),
            ).reshape((vect.shape[0], ) + self.output_shapes[output_key])
            for output_key in self.output_tensor_mapping
        }
コード例 #19
0
def main():

    model, signature, batch_file_path, sentence, target = parse_args()

    feat_dict = {"sentences": [], "targets": []}

    if batch_file_path is not None:
        with open(batch_file_path, "r") as batch_file:
            fieldnames = ["target", "sentence"]
            csvreader = DictReader(batch_file, fieldnames=fieldnames)
            for row in csvreader:
                feat_dict["targets"].append(row["target"].strip())
                feat_dict["sentences"].append(row["sentence"].strip())
    else:
        feat_dict["targets"].append(target)
        feat_dict["sentences"].append(sentence)

    l_ctxts, trgs, r_ctxts = FeatureProvider.partition_sentences(
        sentences=feat_dict["sentences"],
        targets=feat_dict["targets"],
        offsets=FeatureProvider.get_target_offset_array(feat_dict),
    )
    l_enc = [
        FeatureProvider.tf_encode_tokens(tokens)
        for tokens in FeatureProvider.tokenize_phrases(l_ctxts)
    ]
    trg_enc = [
        FeatureProvider.tf_encode_tokens(tokens)
        for tokens in FeatureProvider.tokenize_phrases(trgs)
    ]
    r_enc = [
        FeatureProvider.tf_encode_tokens(tokens)
        for tokens in FeatureProvider.tokenize_phrases(r_ctxts)
    ]

    tf_examples = []

    for left, target, right in zip(l_enc, trg_enc, r_enc):
        features = Features(
            feature={
                "left": Feature(bytes_list=BytesList(value=left)),
                "target": Feature(bytes_list=BytesList(value=target)),
                "right": Feature(bytes_list=BytesList(value=right)),
            }
        )
        tf_example = Example(features=features)
        tf_examples.append(tf_example.SerializeToString())

    tensor_proto = make_tensor_proto(
        tf_examples, dtype=tf_string, shape=[len(tf_examples)]
    )

    channel = insecure_channel("127.0.0.1:8500")
    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

    # CLASSIFICATION
    classification_req = ClassificationRequest()
    inputs = Input(example_list=ExampleList(examples=[tf_example]))
    classification_req.input.CopyFrom(inputs)  # pylint: disable=E1101
    classification_req.model_spec.name = "lg"  # pylint: disable=E1101
    classification = stub.Classify(classification_req, 60.0)
    print(classification)

    # PREDICTION
    prediction_req = PredictRequest()
    prediction_req.inputs["instances"].CopyFrom(  # pylint: disable=E1101
        tensor_proto
    )
    prediction_req.model_spec.signature_name = (  # pylint: disable=E1101
        signature
    )
    prediction_req.model_spec.name = model  # pylint: disable=E1101
    prediction = stub.Predict(prediction_req, 60.0)
    print(prediction)
コード例 #20
0
    def predict(self, request_data, request_timeout=10):

        self.logger.info('Sending request to tfserving model')
        self.logger.info('Host: {}'.format(self.host))
        self.logger.info('Model name: {}'.format(self.model_name))
        self.logger.info('Model version: {}'.format(self.model_version))

        image = Image.open(request_data)
        image = image.resize((224, 224), Image.NEAREST)

        image = np.asarray(image).reshape((1, 224, 224, 3))

        # Create gRPC client and request
        t = time.time()
        channel = grpc.insecure_channel(self.host)
        self.logger.debug(
            'Establishing insecure channel took: {}'.format(time.time() - t))

        t = time.time()
        stub = PredictionServiceStub(channel)
        self.logger.debug('Creating stub took: {}'.format(time.time() - t))

        t = time.time()
        request = PredictRequest()
        self.logger.debug(
            'Creating request object took: {}'.format(time.time() - t))

        request.model_spec.name = self.model_name
        request.model_spec.signature_name = 'predict_images'
        #request.model_spec.signature_name = tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME

        if self.model_version > 0:
            request.model_spec.version.value = self.model_version

        #pic = Image.open(request_data)
        #image = np.asarray(Image.open(request_data) )
        print("Image shape:", image.shape)

        #foo =  tf.contrib.util.make_tensor_proto(image.astype(dtype=np.float32), shape=[1, 224, 224, 3])
        #print("tensor shape:", foo.get_shape() )

        request.inputs['images'].CopyFrom(
            tf.contrib.util.make_tensor_proto(image.astype(dtype=np.float32),
                                              shape=[1, 224, 224, 3]))

        try:
            t = time.time()
            predict_response = stub.Predict(request, timeout=request_timeout)

            self.logger.debug(
                'Actual request took: {} seconds'.format(time.time() - t))

            predict_response_dict = predict_response_to_dict(predict_response)

            keys = [k for k in predict_response_dict]
            self.logger.info('Got predict_response with keys: {}'.format(keys))

            return predict_response_dict

        except RpcError as e:
            self.logger.error(e)
            self.logger.error('Prediction failed!')

        return {}
コード例 #21
0
    args = vars(ap.parse_args())

    input_name = "input_1"
    output_name = "dense_1"

    # Process input image
    # img_path = "datasets/images/bluebell/image_0241.jpg"
    img_path = args["image"]
    img = load_img(img_path, target_size=(224, 224))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = imagenet_utils.preprocess_input(img)
    # print(img.shape)

    # Create new GRPC request
    request = PredictRequest()
    request.model_spec.name = "flowers17"
    request.model_spec.signature_name = "serving_default"
    request.inputs[input_name].CopyFrom(tf.make_tensor_proto(img))

    # Send request to server
    channel = grpc.insecure_channel("localhost:8500")
    predict_service = prediction_service_pb2_grpc.PredictionServiceStub(
        channel)
    response = predict_service.Predict(request, timeout=10.0)
    # print(response)

    res = response.outputs[output_name].float_val
    print("[INFO] Raw Prediction Labels: {}".format(res))
    prediction = LABELS[np.argmax(res)]
    print("[INFO] Predicted Label: {}".format(prediction))
コード例 #22
0
 def call(self, request: Request) -> Any:
     predict_request = PredictRequest()
     predict_request.inputs["embedding_input"].CopyFrom(
         tf.make_tensor_proto(request.query, dtype=tf.float32))
     return [predict_request], {}