def testWordCount(self): with tf.compat.v1.Graph().as_default(): string_tensor = tf.constant(['abc', 'def', 'fghijklm', 'z', '']) tokenized_tensor = tf.compat.v1.string_split(string_tensor, delimiter='') output_tensor = mappers.word_count(tokenized_tensor) output_3d_tensor = mappers.word_count( tf.sparse.expand_dims( tf.sparse.expand_dims(tokenized_tensor, axis=1), axis=1)) with tf.compat.v1.Session(): output = output_tensor.eval() self.assertEqual(5, len(output)) self.assertEqual(15, sum(output)) self.assertAllEqual(output, [3, 3, 8, 1, 0]) self.assertAllEqual(output, output_3d_tensor.eval())
def testWordCountEmpty(self): output_tensor = mappers.word_count( tf.compat.v1.string_split(tf.constant(['']))) with tf.compat.v1.Session(): output = output_tensor.eval() self.assertEqual(1, len(output)) self.assertEqual(0, sum(output))
def testWordCount(self): string_tensor = tf.constant(['abc', 'def', 'fghijklm', 'z', '']) tokenized_tensor = tf.compat.v1.string_split(string_tensor, delimiter='') output_tensor = mappers.word_count(tokenized_tensor) with tf.compat.v1.Session(): output = output_tensor.eval() self.assertEqual(5, len(output)) self.assertEqual(15, sum(output)) self.assertAllEqual(output, [3, 3, 8, 1, 0])