コード例 #1
0
ファイル: dense.py プロジェクト: dementrock/Lasagne-tf
    def get_output_for(self, input, **kwargs):
        if input.ndim > 2:
            # if the input has more than two dimensions, flatten it into a
            # batch of feature vectors.
            input = T.flatten(input, 2)

        activation = T.dot(input, self.W)
        if self.b is not None:
            activation = T.broadcast('+', activation , T.dimshuffle(self.b, 'x', 0), 'xx,1x')
        return self.nonlinearity(activation)
コード例 #2
0
ファイル: recurrent.py プロジェクト: dementrock/Lasagne-tf
def main(num_epochs=NUM_EPOCHS):
    print("Building network ...")
    # First, we build the network, starting with an input layer
    # Recurrent layers expect input of shape
    # (batch size, max sequence length, number of features)
    l_in = lasagne.layers.InputLayer(shape=(N_BATCH, MAX_LENGTH, 2))
    # The network also needs a way to provide a mask for each sequence.  We'll
    # use a separate input layer for that.  Since the mask only determines
    # which indices are part of the sequence for each batch entry, they are
    # supplied as matrices of dimensionality (N_BATCH, MAX_LENGTH)
    l_mask = lasagne.layers.InputLayer(shape=(N_BATCH, MAX_LENGTH))
    # We're using a bidirectional network, which means we will combine two
    # RecurrentLayers, one with the backwards=True keyword argument.
    # Setting a value for grad_clipping will clip the gradients in the layer
    # Setting only_return_final=True makes the layers only return their output
    # for the final time step, which is all we need for this task
    l_forward = lasagne.layers.RecurrentLayer(
        l_in, N_HIDDEN, mask_input=l_mask, grad_clipping=GRAD_CLIP,
        W_in_to_hid=lasagne.init.HeUniform(),
        W_hid_to_hid=lasagne.init.HeUniform(),
        nonlinearity=lasagne.nonlinearities.tanh, only_return_final=True)
    l_backward = lasagne.layers.RecurrentLayer(
        l_in, N_HIDDEN, mask_input=l_mask, grad_clipping=GRAD_CLIP,
        W_in_to_hid=lasagne.init.HeUniform(),
        W_hid_to_hid=lasagne.init.HeUniform(),
        nonlinearity=lasagne.nonlinearities.tanh,
        only_return_final=True, backwards=True)
    # Now, we'll concatenate the outputs to combine them.
    l_concat = lasagne.layers.ConcatLayer([l_forward, l_backward])
    # Our output layer is a simple dense connection, with 1 output unit
    l_out = lasagne.layers.DenseLayer(
        l_concat, num_units=1, nonlinearity=lasagne.nonlinearities.tanh)

    target_values = T.vector('target_output', fixed_shape=(N_BATCH,))

    # lasagne.layers.get_output produces a variable for the output of the net
    network_output = lasagne.layers.get_output(l_out)
    # The network output will have shape (n_batch, 1); let's flatten to get a
    # 1-dimensional vector of predicted values
    predicted_values = T.flatten(network_output)
    # Our cost will be mean-squared error
    cost = T.mean(T.square(predicted_values - target_values))
    # Retrieve all parameters from the network
    all_params = lasagne.layers.get_all_params(l_out)
    # Compute SGD updates for training
    print("Computing updates ...")
    updates = lasagne.updates.adagrad(cost, all_params, LEARNING_RATE)
    # Theano functions for training and computing cost
    print("Compiling functions ...")
    import time
    start_time = time.time()
    train = theano.function([l_in.input_var, target_values, l_mask.input_var],
                            cost, updates=updates)
    compute_cost = theano.function(
        [l_in.input_var, target_values, l_mask.input_var], cost)
    print("compiling took %f seconds" % (time.time() - start_time))

    # We'll use this "validation set" to periodically check progress
    X_val, y_val, mask_val = gen_data()

    print("Training ...")
    try:
        for epoch in range(num_epochs):
            import time
            start_time = time.time()
            for _ in range(EPOCH_SIZE):
                X, y, m = gen_data()
                train(X, y, m)
            cost_val = compute_cost(X_val, y_val, mask_val)
            print("Epoch {} validation cost = {}; spent {} seconds".format(epoch, cost_val, time.time() - start_time))
    except KeyboardInterrupt:
        pass