コード例 #1
0
    def save_weights(self, filepath, format=None):
        """Input filepath, save model weights into a file of given format.
            Use self.load_weights() to restore.

        Parameters
        ----------
        filepath : str
            Filename to which the model weights will be saved.
        format : str or None
            Saved file format.
            Value should be None, 'hdf5', 'npz', 'npz_dict' or 'ckpt'. Other format is not supported now.
            1) If this is set to None, then the postfix of filepath will be used to decide saved format.
            If the postfix is not in ['h5', 'hdf5', 'npz', 'ckpt'], then file will be saved in hdf5 format by default.
            2) 'hdf5' will save model weights name in a list and each layer has its weights stored in a group of
            the hdf5 file.
            3) 'npz' will save model weights sequentially into a npz file.
            4) 'npz_dict' will save model weights along with its name as a dict into a npz file.
            5) 'ckpt' will save model weights into a tensorflow ckpt file.

            Default None.

        Examples
        --------
        1) Save model weights in hdf5 format by default.
        >>> net = tl.models.vgg16()
        >>> net.save_weights('./model.h5')
        ...
        >>> net.load_weights('./model.h5')

        2) Save model weights in npz/npz_dict format
        >>> net = tl.models.vgg16()
        >>> net.save_weights('./model.npz')
        >>> net.save_weights('./model.npz', format='npz_dict')

        """
        if self.all_weights is None or len(self.all_weights) == 0:
            logging.warning("Model contains no weights or layers haven't been built, nothing will be saved")
            return

        if format is None:
            postfix = filepath.split('.')[-1]
            if postfix in ['h5', 'hdf5', 'npz', 'ckpt']:
                format = postfix
            else:
                format = 'hdf5'

        if format == 'hdf5' or format == 'h5':
            utils.save_weights_to_hdf5(filepath, self)
        elif format == 'npz':
            utils.save_npz(self.all_weights, filepath)
        elif format == 'npz_dict':
            utils.save_npz_dict(self.all_weights, filepath)
        elif format == 'ckpt':
            # TODO: enable this when tf save ckpt is enabled
            raise NotImplementedError("ckpt load/save is not supported now.")
        else:
            raise ValueError(
                "Save format must be 'hdf5', 'npz', 'npz_dict' or 'ckpt'."
                "Other format is not supported now."
            )
コード例 #2
0
    def build(self, inputs):

        if self.use_gemm:
            raise Exception("TODO. The current version use tf.matmul for inferencing.")

        if len(self.strides) != 2:
            raise ValueError("len(strides) should be 2.")

        try:
            self.pre_channel = int(inputs.get_shape()[-1])
        except Exception:  # if pre_channel is ?, it happens when using Spatial Transformer Net
            self.pre_channel = 1
            logging.warning("[warnings] unknow input channels, set to 1")

        self.shape = (self.filter_size[0], self.filter_size[1], self.pre_channel, self.n_filter)
        self.strides = (1, self.strides[0], self.strides[1], 1)

        self.W = tf.get_variable(
                name=self.name+'\kernel', shape=self.shape, initializer=self.W_init, dtype=LayersConfig.tf_dtype, **self.W_init_args
            )
        if self.b_init:
            self.b = tf.get_variable(
                name=self.name+'\bias', shape=(self.shape[-1]), initializer=self.b_init, dtype=LayersConfig.tf_dtype,
                **self.b_init_args
            )
            self.add_weights([self.W, self.b])
        else:
            self.add_weights(self.W)
コード例 #3
0
ファイル: core.py プロジェクト: ClementXu/tensorlayer2
    def _check_mode(self, is_train):
        """Check whether this network is in a given mode.

        Parameters
        ----------
        is_train : boolean
            Network's mode. True means training mode while False means evaluation mode.

        Returns
        -------

        """
        # contradiction test
        if is_train is None and self.is_train is None:
            raise ValueError(
                "Training / inference mode not defined. Argument `is_train` should be set as True / False. Otherwise please use `Model.train()` / `Model.eval()` to switch the mode."
            )
        elif is_train is not None and self.is_train is not None:
            if is_train == self.is_train:
                logging.warning(
                    "Training / inference mode redefined redundantly. Please EITHER use the argument `is_train` OR `Model.train()` / `Model.eval()` to define the mode."
                )
            else:
                raise AttributeError(
                    "Training / inference mode mismatch. The argument `is_train` is set as %s, "
                    % is_train + "but the mode is currently set as %s. " %
                    ('Training by Model.train()' if self.
                     is_train else 'Inference by Model.eval()') +
                    "Please EITHER use the argument `is_train` OR `Model.train()` / `Model.eval()` to define the mode."
                )
コード例 #4
0
ファイル: core.py プロジェクト: zsdonghao/tensorlayer
    def _check_mode(self, is_train):
        """Check whether this network is in a given mode.

        Parameters
        ----------
        is_train : boolean
            Network's mode. True means training mode while False means evaluation mode.

        Returns
        -------

        """
        # contradiction test
        if is_train is None and self.is_train is None:
            raise ValueError(
                "Training / inference mode not defined. Argument `is_train` should be set as True / False. Otherwise please use `Model.train()` / `Model.eval()` to switch the mode."
            )
        elif is_train is not None and self.is_train is not None:
            if is_train == self.is_train:
                logging.warning(
                    "Training / inference mode redefined redundantly. Please EITHER use the argument `is_train` OR `Model.train()` / `Model.eval()` to define the mode."
                )
            else:
                raise AttributeError(
                    "Training / inference mode mismatch. The argument `is_train` is set as %s, " % is_train +
                    "but the mode is currently set as %s. " %
                    ('Training by Model.train()' if self.is_train else 'Inference by Model.eval()') +
                    "Please EITHER use the argument `is_train` OR `Model.train()` / `Model.eval()` to define the mode."
                )
コード例 #5
0
    def __init__(
        self,
        prev_layer,
        model_fn,
        layer_args=None,
        name='estimator_layer',
    ):
        super(EstimatorLayer, self).__init__(prev_layer=prev_layer,
                                             layer_args=layer_args,
                                             name=name)

        logging.info("EstimatorLayer %s: %s" % (self.name, model_fn))

        if model_fn is None:
            raise ValueError('model fn is None')

        logging.warning(
            "This API will be removed, please use LambdaLayer instead.")

        with tf.variable_scope(name) as vs:
            self.outputs = model_fn(self.inputs, **self.layer_args)
            variables = tf.get_collection(TF_GRAPHKEYS_VARIABLES,
                                          scope=vs.name)

        self._add_layers(self.outputs)
        self._add_params(variables)
コード例 #6
0
ファイル: core.py プロジェクト: jayeshsuvagiya/dcgan
    def save_weights(self, filepath, sess=None, format='hdf5'):
        # TODO: Documentation pending
        """Input filepath and the session(optional), save model weights into a file of given format.
            Use self.load_weights() to restore.

        Parameters
        ----------
        filepath : str
            Filename to which the model weights will be saved.
        sess : None or a tensorflow session
            In eager mode, this should be left as None. In graph mode, must specify it with a tensorflow session.
        format : Save file format
            Value should be 'hdf5', 'npz', 'npz_dict' or 'ckpt'. Other format is not supported now.
            'hdf5' will save model weights name in a list and each layer has its weights stored in a group of
            the hdf5 file.
            'npz' will save model weights sequentially into a npz file.
            'npz_dict' will save model weights along with its name as a dict into a npz file.
            'ckpt' will save model weights into a tensorflow ckpt file.

        Examples
        --------
        1) Save model to hdf5 in eager mode
        >>> net = tl.models.vgg.vgg16()
        >>> net.save_weights('./model.h5')

        2) Save model to npz in graph mode
        >>> sess = tf.Session()
        >>> sess.run(tf.global_variables_initializer())
        >>> net.save_weights('./model.npz', sess=sess, format='npz')

        Returns
        -------

        """
        if self.weights is None:
            logging.warning(
                "Model contains no weights or layers haven't been built, nothing will be saved"
            )
            return

        if format == 'hdf5':
            utils.save_weights_to_hdf5(filepath, self.weights, sess)
        elif format == 'npz':
            utils.save_npz(self.weights, filepath, sess)
        elif format == 'npz_dict':
            utils.save_npz_dict(self.weights, filepath, sess)
        elif format == 'ckpt':
            # TODO: enable this when tf save ckpt is enabled
            raise NotImplementedError("ckpt load/save is not supported now.")
        else:
            raise ValueError(
                "Save format must be 'hdf5', 'npz', 'npz_dict' or 'ckpt'."
                "Other format is not supported now.")
コード例 #7
0
def rename_kwargs(kwargs, aliases, end_support_version, func_name):

    for alias, new in aliases.items():

        if alias in kwargs:

            if new in kwargs:
                raise TypeError('{}() received both {} and {}'.format(func_name, alias, new))

            warnings.warn('{}() - {} is deprecated; use {}'.format(func_name, alias, new), DeprecationWarning)
            logging.warning(
                "DeprecationWarning: {}(): "
                "`{}` argument is deprecated and will be removed in version {}, "
                "please change for `{}.`".format(func_name, alias, end_support_version, new)
            )
            kwargs[new] = kwargs.pop(alias)
コード例 #8
0
ファイル: core.py プロジェクト: jayeshsuvagiya/dcgan
 def _check_mode(self, is_train):
     # contradiction test
     if is_train is None and self.is_train is None:
         raise ValueError(
             "Training / inference mode not defined. Argument `is_train` should be set as True / False. Otherwise please use `Model.train()` / `Model.eval()` to switch the mode."
         )
     elif is_train is not None and self.is_train is not None:
         if is_train == self.is_train:
             logging.warning(
                 "Training / inference mode redefined redundantly. Please EITHER use the argument `is_train` OR `Model.train()` / `Model.eval()` to define the mode."
             )
         else:
             raise AttributeError(
                 "Training / inference mode mismatch. The argument `is_train` is set as %s, "
                 % is_train + "but the mode is currently set as %s. " %
                 ('Training by Model.train()' if self.
                  is_train else 'Inference by Model.eval()') +
                 "Please EITHER use the argument `is_train` OR `Model.train()` / `Model.eval()` to define the mode."
             )
コード例 #9
0
    def build(self, inputs):
        if inputs.shape.as_list()[-1] is None:
            logging.warning("unknown input channels, set to 1")
            pre_channel = 1

        self.shape = (self.filter_size[0], self.filter_size[1], pre_channel, self.n_filter)
        self.strides = (1, strides[0], strides[1], 1)

        self.W = tf.get_variable(
                name=self.name+'\W_conv2d', shape=self.shape, initializer=self.W_init, dtype=LayersConfig.tf_dtype, **self.W_init_args
            )

        if self.b_init:
            self.b = tf.get_variable(
                name=self.name+'\b_conv2d', shape=(self.shape[-1]), initializer=self.b_init, dtype=LayersConfig.tf_dtype,
                **self.b_init_args
            )

        if self.b_init:
            self.add_weights([self.W, self.b])
        else:
            self.add_weights(self.W)
コード例 #10
0
    def __init__(
        self,
        prev_layer,
        keras_layer,
        keras_args=None,
        name='keras_layer',
    ):

        super(Keras, self).__init__(prev_layer=prev_layer,
                                    keras_args=keras_args,
                                    name=name)

        logging.info("Keras %s: %s" % (self.name, keras_layer))

        logging.warning(
            "This API will be removed, please use LambdaLayer instead.")

        with tf.variable_scope(name) as vs:
            self.outputs = keras_layer(self.inputs, **self.keras_args)
            variables = tf.get_collection(TF_GRAPHKEYS_VARIABLES,
                                          scope=vs.name)

        self._add_layers(self.outputs)
        self._add_params(variables)
コード例 #11
0
    def wrapper(wrapped, instance=None, args=None, kwargs=None):

        validate_deprecation_args(date, instructions)

        if _PRINT_DEPRECATION_WARNINGS:

            class_or_func_name = get_qualified_name(wrapped)

            if class_or_func_name not in _PRINTED_WARNING:
                if warn_once:
                    _PRINTED_WARNING[class_or_func_name] = True

                from tensorlayer import logging

                logging.warning(
                    '%s: `%s.%s` (in file: %s) is deprecated and will be removed %s.\n'
                    'Instructions for updating: %s\n' %
                    ("Class" if inspect.isclass(wrapped) else "Function",
                     wrapped.__module__, class_or_func_name,
                     wrapped.__code__.co_filename,
                     'in a future version' if date is None else
                     ('after %s' % date), instructions))

        return wrapped(*args, **kwargs)
コード例 #12
0
    def __init__(
        self,
        prev_layer,
        n_filter=32,
        filter_size=(3, 3),
        strides=(1, 1),
        padding='SAME',
        act=None,
        bitW=8,
        bitA=8,
        use_gemm=False,
        W_init=tf.truncated_normal_initializer(stddev=0.02),
        b_init=tf.constant_initializer(value=0.0),
        W_init_args=None,
        b_init_args=None,
        use_cudnn_on_gpu=None,
        data_format=None,
        name='quan_cnn2d',
    ):
        super(RTQuanConv2d, self).__init__(prev_layer=prev_layer,
                                           act=act,
                                           W_init_args=W_init_args,
                                           b_init_args=b_init_args,
                                           name=name)

        logging.info(
            "RTQuanConv2d %s: n_filter: %d filter_size: %s strides: %s pad: %s act: %s"
            % (self.name, n_filter, str(filter_size), str(strides), padding,
               self.act.__name__ if self.act is not None else 'No Activation'))

        if use_gemm:
            raise Exception(
                "TODO. The current version use tf.matmul for inferencing.")

        if len(strides) != 2:
            raise ValueError("len(strides) should be 2.")

        try:
            pre_channel = int(prev_layer.outputs.get_shape()[-1])
        except Exception:  # if pre_channel is ?, it happens when using Spatial Transformer Net
            pre_channel = 1
            logging.warning("[warnings] unknow input channels, set to 1")

        shape = (filter_size[0], filter_size[1], pre_channel, n_filter)
        strides = (1, strides[0], strides[1], 1)

        with tf.variable_scope(name):
            W = tf.get_variable(name='W_conv2d',
                                shape=shape,
                                initializer=W_init,
                                dtype=LayersConfig.tf_dtype,
                                **self.W_init_args)

            self.outputs = tf.nn.conv2d(self.inputs,
                                        W,
                                        strides=strides,
                                        padding=padding,
                                        use_cudnn_on_gpu=use_cudnn_on_gpu,
                                        data_format=data_format)

            scale = tf.get_variable(name='W_scale',
                                    shape=n_filter,
                                    initializer=W_init,
                                    dtype=LayersConfig.tf_dtype,
                                    **self.W_init_args)

            output_channel = self.outputs.get_shape()
            new_scale = tf.tile(
                scale,
                [output_channel[0] * output_channel[1] * output_channel[2]])
            new_scale = tf.reshape(new_scale, output_channel)
            self.outputs = tf.divide(self.outputs, new_scale)

            if b_init:
                b = tf.get_variable(name='b_conv2d',
                                    shape=(shape[-1]),
                                    initializer=b_init,
                                    dtype=LayersConfig.tf_dtype,
                                    **self.b_init_args)

                self.outputs = tf.nn.bias_add(self.outputs, b, name='bias_add')

            self.outputs = self._apply_activation(self.outputs)

        self._add_layers(self.outputs)

        if b_init:
            self._add_params([W, b, scale])
        else:
            self._add_params([W, scale])
コード例 #13
0
ファイル: recurrent.py プロジェクト: JingqingZ/tensorlayer2
    def __init__(
        self,
        prev_layer,
        cell_fn,
        cell_init_args=None,
        n_hidden=100,
        initializer=tf.compat.v1.initializers.random_uniform(-0.1, 0.1),
        n_steps=5,
        fw_initial_state=None,
        bw_initial_state=None,
        dropout=None,
        n_layer=1,
        return_last=False,
        return_seq_2d=False,
        name='birnn',
    ):
        super(BiRNN, self).__init__(prev_layer=prev_layer,
                                    cell_init_args=cell_init_args,
                                    name=name)

        if self.cell_init_args:
            self.cell_init_args[
                'state_is_tuple'] = True  # 'use_peepholes': True,

        if 'GRU' in cell_fn.__name__:
            try:
                self.cell_init_args.pop('state_is_tuple')
            except Exception:
                logging.warning("pop state_is_tuple fails.")

        if cell_fn is None:
            raise Exception("Please put in cell_fn")

        logging.info(
            "BiRNN %s: n_hidden: %d n_steps: %d in_dim: %d in_shape: %s cell_fn: %s dropout: %s n_layer: %d "
            % (self.name, n_hidden, n_steps, self.inputs.get_shape().ndims,
               self.inputs.get_shape(), cell_fn.__name__, dropout, n_layer))

        fixed_batch_size = self.inputs.get_shape().with_rank_at_least(1)[0]

        if fixed_batch_size.value:
            self.batch_size = fixed_batch_size.value
            logging.info("       RNN batch_size (concurrent processes): %d" %
                         self.batch_size)

        else:
            self.batch_size = array_ops.shape(self.inputs)[0]
            logging.info(
                "       non specified batch_size, uses a tensor instead.")

        # Input dimension should be rank 3 [batch_size, n_steps(max), n_features]
        try:
            self.inputs.get_shape().with_rank(3)
        except Exception:
            raise Exception(
                "RNN : Input dimension should be rank 3 : [batch_size, n_steps, n_features]"
            )

        with tf.compat.v1.variable_scope(name, initializer=initializer) as vs:
            rnn_creator = lambda: cell_fn(num_units=n_hidden,
                                          **self.cell_init_args)
            # Apply dropout
            if dropout:

                if isinstance(
                        dropout,
                    (tuple, list)):  # type(dropout) in [tuple, list]:
                    in_keep_prob = dropout[0]
                    out_keep_prob = dropout[1]

                elif isinstance(dropout, float):
                    in_keep_prob, out_keep_prob = dropout, dropout

                else:
                    raise Exception(
                        "Invalid dropout type (must be a 2-D tuple of "
                        "float)")

                DropoutWrapper_fn = tf.contrib.rnn.DropoutWrapper

                cell_creator = lambda is_last=True: DropoutWrapper_fn(
                    rnn_creator(),
                    input_keep_prob=in_keep_prob,
                    output_keep_prob=out_keep_prob if is_last else 1.0)

            else:
                cell_creator = rnn_creator

            self.fw_cell = cell_creator()
            self.bw_cell = cell_creator()

            # Apply multiple layers
            if n_layer > 1:
                MultiRNNCell_fn = tf.contrib.rnn.MultiRNNCell

                if dropout:
                    try:
                        self.fw_cell = MultiRNNCell_fn([
                            cell_creator(is_last=i == n_layer - 1)
                            for i in range(n_layer)
                        ],
                                                       state_is_tuple=True)
                        self.bw_cell = MultiRNNCell_fn([
                            cell_creator(is_last=i == n_layer - 1)
                            for i in range(n_layer)
                        ],
                                                       state_is_tuple=True)
                    except Exception:
                        self.fw_cell = MultiRNNCell_fn([
                            cell_creator(is_last=i == n_layer - 1)
                            for i in range(n_layer)
                        ])
                        self.bw_cell = MultiRNNCell_fn([
                            cell_creator(is_last=i == n_layer - 1)
                            for i in range(n_layer)
                        ])
                else:
                    try:
                        self.fw_cell = MultiRNNCell_fn(
                            [cell_creator() for _ in range(n_layer)],
                            state_is_tuple=True)
                        self.bw_cell = MultiRNNCell_fn(
                            [cell_creator() for _ in range(n_layer)],
                            state_is_tuple=True)
                    except Exception:
                        self.fw_cell = MultiRNNCell_fn(
                            [cell_creator() for _ in range(n_layer)])
                        self.bw_cell = MultiRNNCell_fn(
                            [cell_creator() for _ in range(n_layer)])

            # Initial state of RNN
            if fw_initial_state is None:
                self.fw_initial_state = self.fw_cell.zero_state(
                    self.batch_size,
                    dtype=LayersConfig.tf_dtype)  # dtype=tf.float32)
            else:
                self.fw_initial_state = fw_initial_state
            if bw_initial_state is None:
                self.bw_initial_state = self.bw_cell.zero_state(
                    self.batch_size,
                    dtype=LayersConfig.tf_dtype)  # dtype=tf.float32)
            else:
                self.bw_initial_state = bw_initial_state
            # exit()
            # Feedforward to MultiRNNCell
            list_rnn_inputs = tf.unstack(self.inputs, axis=1)

            bidirectional_rnn_fn = tf.contrib.rnn.static_bidirectional_rnn

            outputs, fw_state, bw_state = bidirectional_rnn_fn(  # outputs, fw_state, bw_state = tf.contrib.rnn.static_bidirectional_rnn(
                cell_fw=self.fw_cell,
                cell_bw=self.bw_cell,
                inputs=list_rnn_inputs,
                initial_state_fw=self.fw_initial_state,
                initial_state_bw=self.bw_initial_state)

            if return_last:
                raise Exception("Do not support return_last at the moment.")
                # self.outputs = outputs[-1]
            else:
                self.outputs = outputs
                if return_seq_2d:
                    # 2D Tensor [n_example, n_hidden]
                    self.outputs = tf.reshape(tf.concat(outputs, 1),
                                              [-1, n_hidden * 2])

                else:
                    # <akara>: stack more RNN layer after that
                    # 3D Tensor [n_example/n_steps, n_steps, n_hidden]

                    self.outputs = tf.reshape(tf.concat(outputs, 1),
                                              [-1, n_steps, n_hidden * 2])

            self.fw_final_state = fw_state
            self.bw_final_state = bw_state

            # Retrieve just the RNN variables.
            rnn_variables = tf.compat.v1.get_collection(TF_GRAPHKEYS_VARIABLES,
                                                        scope=vs.name)

        logging.info("     n_params : %d" % (len(rnn_variables)))

        self._add_layers(self.outputs)
        self._add_params(rnn_variables)
コード例 #14
0
ファイル: recurrent.py プロジェクト: JingqingZ/tensorlayer2
    def __init__(
        self,
        net_encode_in,
        net_decode_in,
        cell_fn,  #tf.nn.rnn_cell.LSTMCell,
        cell_init_args=None,
        n_hidden=256,
        initializer=tf.compat.v1.initializers.random_uniform(-0.1, 0.1),
        encode_sequence_length=None,
        decode_sequence_length=None,
        initial_state_encode=None,
        initial_state_decode=None,
        dropout=None,
        n_layer=1,
        return_seq_2d=False,
        name='seq2seq',
    ):
        super(Seq2Seq,
              self).__init__(prev_layer=[net_encode_in, net_decode_in],
                             cell_init_args=cell_init_args,
                             name=name)

        if self.cell_init_args:
            self.cell_init_args[
                'state_is_tuple'] = True  # 'use_peepholes': True,

        if cell_fn is None:
            raise ValueError("cell_fn cannot be set to None")

        if 'GRU' in cell_fn.__name__:
            try:
                cell_init_args.pop('state_is_tuple')
            except Exception:
                logging.warning("pop state_is_tuple fails.")

        logging.info(
            "[*] Seq2Seq %s: n_hidden: %d cell_fn: %s dropout: %s n_layer: %d"
            % (self.name, n_hidden, cell_fn.__name__, dropout, n_layer))

        with tf.compat.v1.variable_scope(name):
            # tl.layers.set_name_reuse(reuse)
            # network = InputLayer(self.inputs, name=name+'/input')
            network_encode = DynamicRNN(net_encode_in,
                                        cell_fn=cell_fn,
                                        cell_init_args=self.cell_init_args,
                                        n_hidden=n_hidden,
                                        initializer=initializer,
                                        initial_state=initial_state_encode,
                                        dropout=dropout,
                                        n_layer=n_layer,
                                        sequence_length=encode_sequence_length,
                                        return_last=False,
                                        return_seq_2d=True,
                                        name='encode')
            # vs.reuse_variables()
            # tl.layers.set_name_reuse(True)
            network_decode = DynamicRNN(
                net_decode_in,
                cell_fn=cell_fn,
                cell_init_args=self.cell_init_args,
                n_hidden=n_hidden,
                initializer=initializer,
                initial_state=(network_encode.final_state
                               if initial_state_decode is None else
                               initial_state_decode),
                dropout=dropout,
                n_layer=n_layer,
                sequence_length=decode_sequence_length,
                return_last=False,
                return_seq_2d=return_seq_2d,
                name='decode')
            self.outputs = network_decode.outputs

            # rnn_variables = tf.get_collection(TF_GRAPHKEYS_VARIABLES, scope=vs.name)

        # Initial state
        self.initial_state_encode = network_encode.initial_state
        self.initial_state_decode = network_decode.initial_state

        # Final state
        self.final_state_encode = network_encode.final_state
        self.final_state_decode = network_decode.final_state

        # self.sequence_length = sequence_length
        self._add_layers(network_encode.all_layers)
        self._add_params(network_encode.all_params)
        self._add_dropout_layers(network_encode.all_drop)

        self._add_layers(network_decode.all_layers)
        self._add_params(network_decode.all_params)
        self._add_dropout_layers(network_decode.all_drop)

        self._add_layers(self.outputs)
コード例 #15
0
ファイル: utils.py プロジェクト: zsdonghao/tensorlayer
def set_name_reuse(enable=True):
    logging.warning('this method is DEPRECATED and has no effect, please remove it from your code.')
コード例 #16
0
ファイル: core.py プロジェクト: zsdonghao/tensorlayer
    def save_weights(self, filepath, format=None):
        """Input filepath and the session(optional), save model weights into a file of given format.
            Use self.load_weights() to restore.

        Parameters
        ----------
        filepath : str
            Filename to which the model weights will be saved.
        format : str or None
            Saved file format.
            Value should be None, 'hdf5', 'npz', 'npz_dict' or 'ckpt'. Other format is not supported now.
            1) If this is set to None, then the postfix of filepath will be used to decide saved format.
            If the postfix is not in ['h5', 'hdf5', 'npz', 'ckpt'], then file will be saved in hdf5 format by default.
            2) 'hdf5' will save model weights name in a list and each layer has its weights stored in a group of
            the hdf5 file.
            3) 'npz' will save model weights sequentially into a npz file.
            4) 'npz_dict' will save model weights along with its name as a dict into a npz file.
            5) 'ckpt' will save model weights into a tensorflow ckpt file.

            Default None.

        Examples
        --------
        1) Save model weights in hdf5 format by default.
        >>> net = tl.models.vgg16()
        >>> net.save_weights('./model.h5')
        ...
        >>> net.load_weights('./model.h5')

        2) Save model weights in npz/npz_dict format
        >>> net = tl.models.vgg16()
        >>> net.save_weights('./model.npz')
        >>> net.save_weights('./model.npz', format='npz_dict')

        Returns
        -------

        """
        if self.weights is None or len(self.weights) == 0:
            logging.warning("Model contains no weights or layers haven't been built, nothing will be saved")
            return

        if format is None:
            postfix = filepath.split('.')[-1]
            if postfix in ['h5', 'hdf5', 'npz', 'ckpt']:
                format = postfix
            else:
                format = 'hdf5'

        if format == 'hdf5' or format == 'h5':
            utils.save_weights_to_hdf5(filepath, self)
        elif format == 'npz':
            utils.save_npz(self.weights, filepath)
        elif format == 'npz_dict':
            utils.save_npz_dict(self.weights, filepath)
        elif format == 'ckpt':
            # TODO: enable this when tf save ckpt is enabled
            raise NotImplementedError("ckpt load/save is not supported now.")
        else:
            raise ValueError(
                "Save format must be 'hdf5', 'npz', 'npz_dict' or 'ckpt'."
                "Other format is not supported now."
            )
コード例 #17
0
    def __init__(
            self,
            prev_layer,
            n_filter=32,
            filter_size=(3, 3),
            strides=(1, 1),
            act=None,
            padding='SAME',
            use_gemm=False,
            W_init=tf.truncated_normal_initializer(stddev=0.02),
            b_init=tf.constant_initializer(value=0.0),
            W_init_args=None,
            b_init_args=None,
            use_cudnn_on_gpu=None,
            data_format=None,
            # act=None,
            # shape=(5, 5, 1, 100),
            # strides=(1, 1, 1, 1),
            # padding='SAME',
            # W_init=tf.truncated_normal_initializer(stddev=0.02),
            # b_init=tf.constant_initializer(value=0.0),
            # W_init_args=None,
            # b_init_args=None,
            # use_cudnn_on_gpu=None,
            # data_format=None,
            name='ternary_cnn2d',
    ):
        super(TernaryConv2d, self
             ).__init__(prev_layer=prev_layer, act=act, W_init_args=W_init_args, b_init_args=b_init_args, name=name)

        logging.info(
            "TernaryConv2d %s: n_filter: %d filter_size: %s strides: %s pad: %s act: %s" % (
                self.name, n_filter, str(filter_size), str(strides), padding,
                self.act.__name__ if self.act is not None else 'No Activation'
            )
        )

        if len(strides) != 2:
            raise ValueError("len(strides) should be 2.")

        if use_gemm:
            raise Exception("TODO. The current version use tf.matmul for inferencing.")

        try:
            pre_channel = int(prev_layer.outputs.get_shape()[-1])
        except Exception:  # if pre_channel is ?, it happens when using Spatial Transformer Net
            pre_channel = 1
            logging.warning("unknow input channels, set to 1")

        shape = (filter_size[0], filter_size[1], pre_channel, n_filter)
        strides = (1, strides[0], strides[1], 1)

        with tf.variable_scope(name):

            W = tf.get_variable(
                name='W_conv2d', shape=shape, initializer=W_init, dtype=LayersConfig.tf_dtype, **self.W_init_args
            )

            alpha = compute_alpha(W)

            W = ternary_operation(W)
            W = tf.multiply(alpha, W)

            self.outputs = tf.nn.conv2d(
                self.inputs, W, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu,
                data_format=data_format
            )

            if b_init:

                b = tf.get_variable(
                    name='b_conv2d', shape=(shape[-1]), initializer=b_init, dtype=LayersConfig.tf_dtype,
                    **self.b_init_args
                )

                self.outputs = tf.nn.bias_add(self.outputs, b, name='bias_add')

            self.outputs = self._apply_activation(self.outputs)

        self._add_layers(self.outputs)

        if b_init:
            self._add_params([W, b])
        else:
            self._add_params(W)
コード例 #18
0
ファイル: quan_conv_bn.py プロジェクト: zzyydtc/tensorlayer
    def __init__(
            self,
            prev_layer,
            n_filter=32,
            filter_size=(3, 3),
            strides=(1, 1),
            padding='SAME',
            act=None,
            decay=0.9,
            epsilon=1e-5,
            is_train=False,
            gamma_init=tf.compat.v1.initializers.ones,
            beta_init=tf.compat.v1.initializers.zeros,
            bitW=8,
            bitA=8,
            use_gemm=False,
            W_init=tf.compat.v1.initializers.truncated_normal(stddev=0.02),
            W_init_args=None,
            use_cudnn_on_gpu=None,
            data_format=None,
            name='quan_cnn2d_bn',
    ):
        super(QuanConv2dWithBN, self).__init__(prev_layer=prev_layer, act=act, W_init_args=W_init_args, name=name)

        logging.info(
            "QuanConv2dWithBN %s: n_filter: %d filter_size: %s strides: %s pad: %s act: %s " % (
                self.name, n_filter, filter_size, str(strides), padding,
                self.act.__name__ if self.act is not None else 'No Activation'
            )
        )

        x = self.inputs
        self.inputs = quantize_active_overflow(self.inputs, bitA)  # Do not remove

        if use_gemm:
            raise Exception("TODO. The current version use tf.matmul for inferencing.")

        if len(strides) != 2:
            raise ValueError("len(strides) should be 2.")

        try:
            pre_channel = int(prev_layer.outputs.get_shape()[-1])
        except Exception:  # if pre_channel is ?, it happens when using Spatial Transformer Net
            pre_channel = 1
            logging.warning("[warnings] unknow input channels, set to 1")

        shape = (filter_size[0], filter_size[1], pre_channel, n_filter)
        strides = (1, strides[0], strides[1], 1)

        with tf.compat.v1.variable_scope(name):
            W = tf.compat.v1.get_variable(
                name='W_conv2d', shape=shape, initializer=W_init, dtype=LayersConfig.tf_dtype, **self.W_init_args
            )

            conv = tf.nn.conv2d(
                x, W, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, data_format=data_format
            )

            para_bn_shape = conv.get_shape()[-1:]

            if gamma_init:
                scale_para = tf.compat.v1.get_variable(
                    name='scale_para', shape=para_bn_shape, initializer=gamma_init, dtype=LayersConfig.tf_dtype,
                    trainable=is_train
                )
            else:
                scale_para = None

            if beta_init:
                offset_para = tf.compat.v1.get_variable(
                    name='offset_para', shape=para_bn_shape, initializer=beta_init, dtype=LayersConfig.tf_dtype,
                    trainable=is_train
                )
            else:
                offset_para = None

            moving_mean = tf.compat.v1.get_variable(
                'moving_mean', para_bn_shape, initializer=tf.compat.v1.initializers.constant(1.),
                dtype=LayersConfig.tf_dtype, trainable=False
            )

            moving_variance = tf.compat.v1.get_variable(
                'moving_variance',
                para_bn_shape,
                initializer=tf.compat.v1.initializers.constant(1.),
                dtype=LayersConfig.tf_dtype,
                trainable=False,
            )

            mean, variance = tf.nn.moments(x=conv, axes=list(range(len(conv.get_shape()) - 1)))

            update_moving_mean = moving_averages.assign_moving_average(
                moving_mean, mean, decay, zero_debias=False
            )  # if zero_debias=True, has bias

            update_moving_variance = moving_averages.assign_moving_average(
                moving_variance, variance, decay, zero_debias=False
            )  # if zero_debias=True, has bias

            def mean_var_with_update():
                with tf.control_dependencies([update_moving_mean, update_moving_variance]):
                    return tf.identity(mean), tf.identity(variance)

            if is_train:
                mean, var = mean_var_with_update()
            else:
                mean, var = moving_mean, moving_variance

            w_fold = _w_fold(W, scale_para, var, epsilon)
            bias_fold = _bias_fold(offset_para, scale_para, mean, var, epsilon)

            W = quantize_weight_overflow(w_fold, bitW)

            conv_fold = tf.nn.conv2d(
                self.inputs, W, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu,
                data_format=data_format
            )

            self.outputs = tf.nn.bias_add(conv_fold, bias_fold, name='bn_bias_add')

            self.outputs = self._apply_activation(self.outputs)

        self._add_layers(self.outputs)

        self._add_params([W, scale_para, offset_para, moving_mean, moving_variance])
コード例 #19
0
ファイル: recurrent.py プロジェクト: zsdonghao/tensorlayer
    def __init__(
            self,
            net_encode_in,
            net_decode_in,
            cell_fn,  #tf.nn.rnn_cell.LSTMCell,
            cell_init_args=None,
            n_hidden=256,
            initializer=tf.compat.v1.initializers.random_uniform(-0.1, 0.1),
            encode_sequence_length=None,
            decode_sequence_length=None,
            initial_state_encode=None,
            initial_state_decode=None,
            dropout=None,
            n_layer=1,
            return_seq_2d=False,
            name='seq2seq',
    ):
        super(Seq2Seq,
              self).__init__(prev_layer=[net_encode_in, net_decode_in], cell_init_args=cell_init_args, name=name)

        if self.cell_init_args:
            self.cell_init_args['state_is_tuple'] = True  # 'use_peepholes': True,

        if cell_fn is None:
            raise ValueError("cell_fn cannot be set to None")

        if 'GRU' in cell_fn.__name__:
            try:
                cell_init_args.pop('state_is_tuple')
            except Exception:
                logging.warning("pop state_is_tuple fails.")

        logging.info(
            "[*] Seq2Seq %s: n_hidden: %d cell_fn: %s dropout: %s n_layer: %d" %
            (self.name, n_hidden, cell_fn.__name__, dropout, n_layer)
        )

        with tf.compat.v1.variable_scope(name):
            # tl.layers.set_name_reuse(reuse)
            # network = InputLayer(self.inputs, name=name+'/input')
            network_encode = DynamicRNN(
                net_encode_in, cell_fn=cell_fn, cell_init_args=self.cell_init_args, n_hidden=n_hidden,
                initializer=initializer, initial_state=initial_state_encode, dropout=dropout, n_layer=n_layer,
                sequence_length=encode_sequence_length, return_last=False, return_seq_2d=True, name='encode'
            )
            # vs.reuse_variables()
            # tl.layers.set_name_reuse(True)
            network_decode = DynamicRNN(
                net_decode_in, cell_fn=cell_fn, cell_init_args=self.cell_init_args, n_hidden=n_hidden,
                initializer=initializer,
                initial_state=(network_encode.final_state if initial_state_decode is None else initial_state_decode),
                dropout=dropout, n_layer=n_layer, sequence_length=decode_sequence_length, return_last=False,
                return_seq_2d=return_seq_2d, name='decode'
            )
            self.outputs = network_decode.outputs

            # rnn_variables = tf.get_collection(TF_GRAPHKEYS_VARIABLES, scope=vs.name)

        # Initial state
        self.initial_state_encode = network_encode.initial_state
        self.initial_state_decode = network_decode.initial_state

        # Final state
        self.final_state_encode = network_encode.final_state
        self.final_state_decode = network_decode.final_state

        # self.sequence_length = sequence_length
        self._add_layers(network_encode.all_layers)
        self._add_params(network_encode.all_params)
        self._add_dropout_layers(network_encode.all_drop)

        self._add_layers(network_decode.all_layers)
        self._add_params(network_decode.all_params)
        self._add_dropout_layers(network_decode.all_drop)

        self._add_layers(self.outputs)
コード例 #20
0
def set_name_reuse(enable=True):
    logging.warning(
        'this method is DEPRECATED and has no effect, please remove it from your code.'
    )
コード例 #21
0
def clear_layers_name():
    logging.warning(
        'this method is DEPRECATED and has no effect, please remove it from your code.'
    )
コード例 #22
0
ファイル: binary_conv_my.py プロジェクト: 1icas/tensorlayer
    def __init__(self,
                 prev_layer,
                 n_filter=32,
                 filter_size=(3, 3),
                 strides=(1, 1),
                 act=None,
                 padding='SAME',
                 use_gemm=False,
                 W_init=None,
                 b_init=None,
                 W_init_args=None,
                 b_init_args=None,
                 use_cudnn_on_gpu=None,
                 data_format=None,
                 name='my_binary_conv2d'):
        super(MyBinaryConv2d, self).__init__(prev_layer=prev_layer,
                                             act=act,
                                             W_init_args=W_init_args,
                                             b_init_args=b_init_args,
                                             name=name)

        logging.info(
            "MyBinaryConv2d %s: n_filter: %d filter_size: %s strides: %s pad: %s act: %s"
            % (self.name, n_filter, str(filter_size), str(strides), padding,
               self.act.__name__ if self.act is not None else 'No Activation'))

        if use_gemm:
            raise Exception(
                "TODO. The current version use tf.matmul for inferencing.")

        try:
            pre_channel = int(prev_layer.outputs.get_shape()[-1])
        except Exception:
            pre_channel = 1
            logging.warning("unknown input channels, set to 1")

        w_shape = (filter_size[0], filter_size[1], pre_channel, n_filter)
        strides = (1, strides[0], strides[1], 1)

        with tf.variable_scope(name):
            W = tf.get_variable(name='binary_w',
                                shape=w_shape,
                                initializer=W_init,
                                dtype=LayersConfig.tf_dtype,
                                **self.W_init_args)
            binary_W = binary_weight(W)
            self.outputs = tf.nn.conv2d(self.inputs, binary_W, strides,
                                        padding, use_cudnn_on_gpu, data_format)
            if b_init:
                b = tf.get_variable(name='bias',
                                    shape=(w_shape[-1]),
                                    initializer=b_init,
                                    dtype=LayersConfig.tf_dtype,
                                    **self.b_init_args)
                self.outputs = tf.nn.bias_add(self.outputs, b, name='b_add')
            self.outputs = self._apply_activation(self.outputs)

            self._add_layers(self.outputs)

            if b_init:
                self._add_params([W, b])
            else:
                self._add_params(W)